# Functional Silicone Reactivity Guide



# CONTENTS

| Reactivity Guide                                                                         | 1  |
|------------------------------------------------------------------------------------------|----|
| Vinyl Functional Fluids                                                                  | 3  |
| Hydride Functional Fluids                                                                | 12 |
| Silanol Functional Fluids                                                                | 16 |
| Amine Functional Fluids                                                                  | 20 |
| Epoxy Functional Fluids                                                                  | 23 |
| Carbinol (Hydroxyalkyl) Functional Fluids                                                | 25 |
| Methacrylate/Acrylate Functional Fluids                                                  | 27 |
| Selected Functional Fluids (non-hydrolyzeable)<br>(Mercapto, Chloroalkyl, Carboxylate)   | 29 |
| Selected Functional Fluids (hydrolyzeable)<br>(Chlorine, Acetoxy, Dimethylamine, Alkoxy) | 30 |
| Macromers and Monofunctional Terminated Fluids                                           | 31 |
| Emulsions (Water-borne Reactive Fluids)                                                  | 33 |
| Polymeric Alkoxides                                                                      | 34 |
| Silsesquioxanes                                                                          | 37 |
| PolySilazanes and PolySilanes                                                            | 41 |
| Specialty Silicon Containing Polymers                                                    | 42 |
| Vinyl Addition Cure: Catalysts, Inhibitors, Adhesion Promoters                           | 44 |
| Condensation Cure: Crosslinkers, Catalysts                                               | 46 |
| Activated Cure: Peroxides                                                                | 48 |
| Pigments, Reinforcements, Fillers                                                        | 49 |
| Index                                                                                    | 50 |

#### Si-CH=CH<sub>2</sub>

## **Vinyl Functional Polymers**

The reactivity of vinyl functional polymers is utilized in two major regimes. Vinyl terminated polymers are employed in **addition cure** systems. The bond forming chemistry is the platinum catalyzed hydrosilylation reaction which proceeds according to the following equation:

Vinylmethylsiloxane copolymers and vinyl T-structure fluids are mostly employed in **peroxide activated cure** systems which involve peroxide induced free radical coupling between vinyl and methyl groups. Concomitant and subsequent reactions take place among methyl groups and between crosslink sites and methyl groups. The initial crosslinking reaction is depicted in the following equation:

#### Addition Cure (Platinum Cure)

Addition cure chemistry provides an extremely flexible basis for formulating silicone elastomers. An important feature of the cure system is that no byproducts are formed, allowing fabrication of parts with good dimensional stability. Cures below 50°C, Room Temperature Vulcanizing (RTV), cures between 50° and 130°C, Low Temperature Vulcanizing (LTV), and cures above 130°C, High Temperature Vulcanizing (HTV) are all readily achieved by addition cure. The rheology of the systems can also be varied widely, ranging from dip-cures to liquid injection molding (LIM) and conventional heat-cure rubber (HCR) processing. Vinyl-terminated polydimethyl-siloxanes with viscosities greater than 200 cSt generally have less than 1% volatiles and form the base polymers for these systems. More typically, base polymers range from 1000 to 60,000 cSt. The crosslinking polymer is generally a methylhydrosiloxane-dimethylsiloxane copolymer with 15-50 mole % methylhydrosiloxane. The catalyst is usually a complex of platinum in alcohol, xylene, divinylsiloxanes or cyclic vinylsiloxanes. The system is usually prepared in two parts. By convention, the A part usually contains the platinum at a level of 5-10ppm, and the B part usually contains the hydride functional siloxane.

Formulation of addition cure silicones must address the following issues:

*Strength*- Unfilled silicones have extremely poor mechanical properties and will literally crumble under pressure from a fingernail. The most effective reinforcing filler is hexamethyldisilazane treated fumed silica. Alternatively, if clarity must be maintained, vinyl "Q" reinforcing resins are employed.

*Hardness*- Higher crosslink density provides higher durometer elastomers. Gels are weakly crosslinked systems and even contain substantial quantities of "free" fluids. In principal, molar equivalents of hydrides react with vinyls. See the section on hydride functional fluids for further information. Also, polymers with vinyl pendant on the chain rather than at chain ends are utilized to modify hardness and compression set.

*Consistency*- The viscosity of the base polymer and a variety of low surface area fillers ranging from calcium carbonate to precipitated silica are used to control the flow characteristics of silicone elastomers.

*Temperature of Cure-* Selection of platinum catalysts generally controls the preferred temperature of cure<sup>1</sup>. Platinum in vinyldisiloxanes is usually used in room temperature cures. Platinum in cyclic vinylsiloxanes is usually used in high temperature cures. See the Platinum listings in the catalyst section.

*Work Time (Speed of Cure)-* Apart from temperature, moderators (sometimes called retarders) and inhibitors are used to control work time. Moderators slow, but do not stop platinum catalysts. A typical moderator is tetravinyltetramethylcyclotetrasiloxane. Inhibitors stop or "shut-down" platinum catalysts and therefore are fugitive, i.e volatile or decomposed by heat or light (UV). Acetylenic alcohols such as methylisobutynol are volatile inhibitors. Patent literature shows that t-butylhydroperoxide is an effective inhibitor that breaks down at temperatures above 130°.

*Low Temperature Properties, Optical Properties-* The introduction of vinyl polymers with phenyl groups alters physical properties of elastomers. At levels of 3-4 mole%, phenyl groups improve low temperature properties. At higher levels, they are used to alter refractive index of elastomers, ranging from matching fillers for transparency to optical fiber applications. Unfortunately, increased phenyl substitution lowers mechanical properties of elastomers.

*Shelf Life*- A fully compounded elastomer is a complex system. Shelf-life can be affected by moisture, differential adsorption of reactive components by fillers and inhibitory effects of trace impurities. Empirical adjustments of catalyst and hydride levels are made to compensate for these effects.

*Compounding-* All but the lowest consistency elastomers are typically compounded in sigmablade mixers, planetary mixers, two-roll mills or, for large scale production, twin-screw extruders.

### Quick Start Formulation - Transfer and Impression Molding Elastomer

This low strength formulation is useful as a reproductive molding compound. It is presented here because it can be prepared without special equipment and is an instructive starting point for addition cure silicone elastomers.

| DMS-V31   | 1000 cSt vinyl terminated polydimethylsiloxane | 100 parts  |
|-----------|------------------------------------------------|------------|
| SIS6962.0 | hexamethyldisilazane treated silica            | 50 parts   |
| HMS-301   | methylhydrosiloxane-dimethylsiloxane copolymer | 3-4 parts  |
| SIP6830.0 | platinum complex solution                      | 150-200ppm |

In small portions, work the DMS-V31 into the silica with a spatula. After a uniform dispersion is produced, work in the HMS-301. The blend may be stored in this form. Just prior to use add the platinum solution with an eyedropper and work it in rapidly. Working time is 5-10 minutes. The rate of cure can be retarded by adding tetravinyltetramethylcyclotetrasiloxane (SIT7900.0).

<sup>&</sup>lt;sup>1</sup>L. Lewis et al, J. Molecular Catalysis A: Chem. 104, 293, 1996; J. Inorg. Organomet. Polym., 6, 123, 1996

#### Peroxide Activated Cure

Activated cure silicone elastomers are processed by methods consistent with conventional rubbers. These silicone products are referred to as HCRs (heat cured rubbers). The base stocks are high molecular weight linear polydiorganosiloxanes that can be converted from a highly viscous plastic state into a predominantly elastic state by crosslinking. Vinylmethylsiloxane-dimethylsiloxane copolymers of extremely high molecular weights are the typical base stocks for activated cure silicone elastomers. The base stocks are commonly referred to as gums. Gums typically have molecular weights from 500,000 to 900,000 with viscosities exceeding 2,000,000 cSt. Free radical coupling (cure) of vinyl and methyl groups is usually initiated by peroxides at process temperatures of 140°-160°. Generally, peroxide loading is 0.2-1.0%. Following the cure, a post-cure at 25-30° higher temperature removes volatile peroxide decomposition products and stabilizes polymer properties. The most widely used peroxides include dibenzoylperoxide (often as a 50% concentrate in silicone oil), dicumylperoxide (often 40% on calcium carbonate), 2,5-dimethyl-2,5-di-t-butylperoxyhexane and bis(dichlorobenzoyl)peroxide. The last peroxide is particularly recommended for aromaticcontaining siloxanes. Terpolymer gums containing low levels of phenyl are used in low temperature applications. At increased phenyl concentrations, they are used in high temperature and radiation resistant applications and are typically compounded with stabilizing fillers such as iron oxide. Phenyl groups reduce cross-linking efficiency of peroxide systems and result in rubbers with lower elasticity. Fluorosilicone materials offer solvent resistance. Lower molecular weight vinylsiloxanes are frequently added to modify processability of base stocks.

While the use of peroxide activated cure chemistry for vinylmethylsiloxanes is wellestablished for gum rubber stocks, its' use is growing in new applications that are comparable to some peroxide cure acrylic systems. Relatively low viscosity vinylmethylsiloxanes and vinyl T-fluids are employed as grafting additives to EPDM elastomers in the wire and cable industry to improve electrical properties. They also form reactive internal lubricants for vulcanizeable rubber formulations. At low levels they are copolymerized with vinyl monomers to form surfactants for organosols.

| (                     | CH <sub>3</sub> | / ( | $H_3 \setminus$ | (   | CH <sub>3</sub> |
|-----------------------|-----------------|-----|-----------------|-----|-----------------|
| H <sub>2</sub> C=CH-S |                 |     |                 |     |                 |
|                       | 1               |     | $CH_3$          |     |                 |
| (                     | JII3            | 10  | -113 /1         | n Y | JI13            |

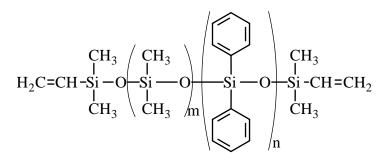
|         |           | Molecular |             |               |         |            |           |            |
|---------|-----------|-----------|-------------|---------------|---------|------------|-----------|------------|
| Code    | Viscosity | Weight    | Wgt % Vinyl | Vinyl - Eq/kg | Density | Price/100g | Price/3kg | Price/16kg |
| DMS-V00 | 0.7       | 186       | 29          | 10.9          | 0.81    | \$52.00    |           |            |
| DMS-V03 | 2-3       | 500       | 10-12       | 3.6-4.3       | 0.92    | \$72.00    |           |            |
| DMS-V05 | 4-6       | 770       | 7-9         | 2.4-2.9       | 0.93    | \$28.00    | \$420.00  |            |
|         |           |           |             |               |         |            |           |            |
| DMS-V21 | 100       | 6000      | 0.8-1.2     | 0.33-0.37     | 0.97    | \$24.00    | \$166.00  | \$432.00   |
| DMS-V22 | 200       | 9400      | 0.4-0.6     | 0.21-0.25     | 0.97    | \$16.00    | \$138.00  | \$360.00   |
| DMS-V25 | 500       | 17,200    | 0.37-0.43   | 0.11-0.13     | 0.97    | \$19.00    | \$148.00  | \$384.00   |
|         |           |           |             |               |         |            | •         |            |
| DMS-V31 | 1000      | 28,000    | 0.18-0.26   | 0.07-0.10     | 0.97    | \$15.00    | \$124.00  | \$322.00   |
| DMS-V33 | 3500      | 43,000    | 0.12-0.15   | 0.05-0.06     | 0.97    | \$19.00    | \$148.00  | \$384.00   |
| DMS-V35 | 5000      | 49,500    | 0.10-0.13   | 0.04-0.05     | 0.97    | \$19.00    | \$148.00  | \$384.00   |
|         | •         |           |             |               |         |            | •         |            |
| DMS-V41 | 10,000    | 62,700    | 0.08-0.12   | 0.03-0.04     | 0.97    | \$19.00    | \$148.00  | \$384.00   |
| DMS-V42 | 20,000    | 72,000    | 0.07-0.09   | 0.025-0.030   | 0.98    | \$21.00    | \$154.00  | \$400.00   |
| DMS-V46 | 65,000    | 117,000   | 0.04-0.06   | 0.018-0.020   | 0.98    | \$24.00    | \$166.00  | \$432.00   |
|         |           |           |             |               |         |            |           |            |
| DMS-V52 | 165,000   | 155,000   | 0.03-0.04   | 0.013-0.016   | 0.98    | \$27.00    | \$166.00  | \$432.00   |

## Vinyl Terminated PolyDimethylsiloxanes

CAS: [68083-19-2] TSCA

These materials are most often employed in 2-part addition cure silicone elastomers.

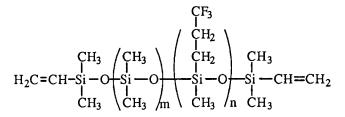
#### Fumed Silica Reinforced Vinyl Terminated Polydimethylsiloxane


|        |       |           | Base Fluid |          |               |         |            |           |            |
|--------|-------|-----------|------------|----------|---------------|---------|------------|-----------|------------|
| Cod    | e     | Viscosity | Viscosity  | % Silica | Vinyl - Eq/Kg | Density | Price/100g | Price/3kg | Price/16kg |
| DMS-V3 | 31S15 | 300,000   | 1,000      | 15-18    | 0.06          | 1.1     | \$29.00    | \$226.00  | \$586.00   |

Precompounded base materials provide access to low durometer formulations without the need for special compounding equipment required to mix fumed silica. The following is a starting-point formulation.

| Part A     |                |        |
|------------|----------------|--------|
| DMS-V31S15 | Base           | 99.85% |
| SIP6831.0  | Catalyst       | 0.15%  |
| Part B     | ·              |        |
| DMS-V31    | Vinyl Silicone | 90.0%  |
| HMS-301    | Crosslinker    | 10.0%  |

Prepare Part A and Part B separately. When ready to cure mix 3 parts A to 1 part B. The mix will cure over 4 hours at room temperature to give the following properties.


| Hardness:  | 20-30 Shore A | Tensile Strength | 3.5MPa (500psi) |
|------------|---------------|------------------|-----------------|
| Elongation | 400-450%      | Tear Strength    | 16N/mm (91ppi)  |



| Vinyl Terminated Diphenylsiloxane-Dimethylsiloxane Copolymers CAS: [68951-96-2] TSCA |                            |           |                     |                     |             |           |  |  |  |
|--------------------------------------------------------------------------------------|----------------------------|-----------|---------------------|---------------------|-------------|-----------|--|--|--|
| Code                                                                                 | Mole %<br>Diphenylsiloxane | Viscosity | Molecular<br>Weight | Refractive<br>Index | Price/100 g | Price/3kg |  |  |  |
| PDV-0325                                                                             | 3.0-3.5                    | 500       | 15,500              | 1.420               | \$38.00     | \$304.00  |  |  |  |
| PDV-0331                                                                             | 3.0-3.5                    | 1000      | 27,000              | 1.420               | \$35.00     | \$280.00  |  |  |  |
| PDV-0341                                                                             | 3.0-3.5                    | 10,000    | 62,000              | 1.420               | \$44.00     | \$352.00  |  |  |  |
| PDV-0346                                                                             | 3.0-3.5                    | 60,000    | 78,000              | 1.420               | \$49.00     | \$392.00  |  |  |  |
|                                                                                      |                            |           | •                   |                     | •           |           |  |  |  |
| PDV-0525                                                                             | 4-6                        | 500       | 14,000              | 1.430               | \$38.00     | \$304.00  |  |  |  |
| PDV-0541                                                                             | 4-6                        | 10,000    | 60,000              | 1.430               | \$44.00     | \$352.00  |  |  |  |
|                                                                                      |                            |           |                     |                     |             |           |  |  |  |
| PDV-1625                                                                             | 15-17                      | 500       | 9,500               | 1.465               | \$38.00     | \$304.00  |  |  |  |
| PDV-1631                                                                             | 15-17                      | 1000      | 19,000              | 1.465               | \$38.00     | \$304.00  |  |  |  |
| PDV-1635                                                                             | 15-17                      | 5,000     | 35,300              | 1.465               | \$38.00     | \$304.00  |  |  |  |
| PDV-1641                                                                             | 15-17                      | 10,000    | 55,000              | 1.465               | \$44.00     | \$352.00  |  |  |  |
|                                                                                      |                            |           |                     |                     |             |           |  |  |  |
| PDV-2331                                                                             | 22-25                      | 1000-1500 | 12,500              | 1.493               | \$110.00    |           |  |  |  |
| PDV-2335                                                                             | 22-25                      | 4000-5000 | 23,000              | 1.493               | \$140.00    |           |  |  |  |

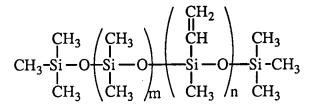
| Vinyl Termi | nated polyPhenylMetl  |               |           | CAS: [     | [225927-21-9] |             |
|-------------|-----------------------|---------------|-----------|------------|---------------|-------------|
|             | Mole %                | -             | Molecular | Refractive |               |             |
| <b>C</b> 1  | <b>D1</b> 13 7 1 1 11 | <b>T</b> 70 0 | **** * *  | <b>T</b> 1 | <b>D</b> .    | D . /100    |
| Code        | PhenylMethylsiloxane  | Viscosity     | Weight    | Index      | Density       | Price/100 g |

These materials are most often employed in 2-part addition cure silicone elastomers where special thermal or optical properties are required.



| Vinyl Termin              | CAS: [68951-9                                         | 98-4] TSCA    |               |         |             |           |  |  |  |
|---------------------------|-------------------------------------------------------|---------------|---------------|---------|-------------|-----------|--|--|--|
| Mole % Molecular Specific |                                                       |               |               |         |             |           |  |  |  |
| Code                      | CF <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> MeSiO | Viscosity     | Weight        | Gravity | Price/100 g | Price/1kg |  |  |  |
| FMV-4031*                 | 35-45                                                 | 13,000-15,000 | 25,000-35,000 | 1.120   | \$110.00    | \$660.00  |  |  |  |
| *D I 1 200                |                                                       |               |               |         |             |           |  |  |  |

\*R.I.: 1.386


Trifluoropropylmethylsiloxane copolymers offer greater solvent resistance (lower hydrocarbon solubility) and lower refractive index than analogous dimethylsiloxane homopolymers.

$$H_{2}C=CH-Si-O \begin{pmatrix} CH_{3} \\ I \\ CH_{3} \end{pmatrix} \begin{pmatrix} CH_{3} \\ CH_{2} \\ I \\ CH_{3} \end{pmatrix} \begin{pmatrix} CH_{3} \\ CH_{2} \\ I \\ CH_{3} \end{pmatrix} \begin{pmatrix} CH_{3} \\ CH_{2} \\ I \\ CH_{2} \\ CH_{2} \end{pmatrix} = CH=CH_{2}$$

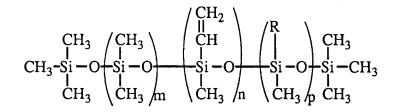
#### Vinyl Terminated Diethylsiloxane -Dimethylsiloxane Copolymers

|          | Mole %          |           | Molecular     | Refractive | Specific |             |
|----------|-----------------|-----------|---------------|------------|----------|-------------|
| Code     | Diethylsiloxane | Viscosity | Weight        | Index      | Gravity  | Price/100 g |
| EDV-2025 | 18-22           | 400-600   | 16,500-19,000 | 1.416      | 0.968    | \$160.00    |

Diethylsiloxane copolymers offer better hydrocarbon compatibility (greater solubility) and higher refractive index than analogous dimethylsiloxane homopolymers.

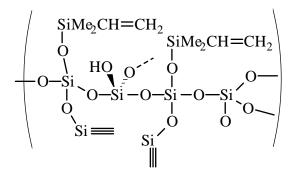


#### Vinylmethylsiloxane - Dimethylsiloxane Copolymers, trimethylsiloxy terminated


|         |                     | 1 / /           | , ,      |             |                |
|---------|---------------------|-----------------|----------|-------------|----------------|
|         |                     |                 |          | CAS: [67]   | 762-94-1] TSCA |
|         | Mole %              |                 | Specific |             |                |
| Code    | Vinylmethylsiloxane | Viscosity, cSt. | Gravity  | Price/100 g | Price/1kg      |
| VDT-123 | 0.8-1.2             | 250-350         | 0.97     | \$21.00     | \$147.00       |
| VDT-127 | 0.8-1.2             | 700-800         | 0.97     | \$36.00     | \$252.00       |
| VDT-131 | 0.8-1.2             | 800-1200        | 0.97     | \$21.00     | \$147.00       |
| VDT-153 | 0.3-0.7             | 200,000-400,000 | 0.98     | \$60.00     | \$420.00       |
| VDT-431 | 4.0-5.0             | 800-1200        | 0.97     | \$26.00     | \$182.00       |
| VDT-731 | 7.0-8.0             | 800-1200        | 0.96     | \$21.00     | \$147.00       |
| VDT-954 | 11.0-13.0           | 300,000-500,000 | 0.98     | \$54.00     | \$378.00       |

Vinylmethylsiloxane - Dimethylsiloxane Copolymers, silanol terminated 4-8% OH

| Molecular Weight: 550-650 CAS: [67923-19-7] |       |       |      |         |          |  |
|---------------------------------------------|-------|-------|------|---------|----------|--|
| VDS-2513                                    | 25-30 | 25-40 | 0.99 | \$54.00 | \$378.00 |  |


| Vinylmethyl | siloxane - Dimethyle | CAS: [680 | 83-18-1] TSCA |         |          |
|-------------|----------------------|-----------|---------------|---------|----------|
| VDV-0131    | 0.3-0.4              | 800-1200  | 0.97          | \$80.00 | \$480.00 |

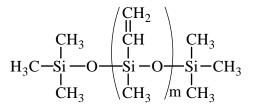
These materials are modifiers for addition cure and activated cure elastomers.



| Vinyl Gums (balance dimethylsiloxane unless otherwise specified) |                             |                                     |          |             |           |  |
|------------------------------------------------------------------|-----------------------------|-------------------------------------|----------|-------------|-----------|--|
|                                                                  | Mole %                      |                                     | Specific |             |           |  |
| Code                                                             | Vinylmethylsiloxane         | Comonomer %                         | Gravity  | Price/100 g | Price/1kg |  |
| VGM-021                                                          | 0.2-0.3                     |                                     | 0.98     | \$36.00     | \$120.00  |  |
| VGP-061                                                          | 0.1-0.2                     | 6-7% Diphenylsiloxane               | 0.99     | \$36.00     | \$180.00  |  |
| VGF-991                                                          | 1.0-2.0%                    | 98-9% Trifluoropropylmethylsiloxane | 1.35     | \$64.00     | \$384.00  |  |
| DGM-000*                                                         | 0.0                         | 100% dimethylsiloxane               | 0.98     | \$36.00     | \$120.00  |  |
| * This gum is li                                                 | isted here for convenience. | It contains no vinyl functionality  |          |             |           |  |

These materials are base polymers for activated cure specialty silicone rubbers.

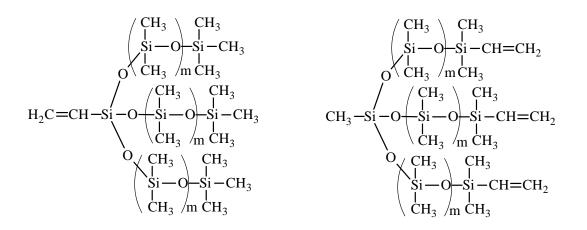



#### Vinyl Q Resins Dispersions

#### CAS: [68584-83-8] TSCA

|          | Refractive    |               |             |       |         |            |           |  |
|----------|---------------|---------------|-------------|-------|---------|------------|-----------|--|
| Code     | Base          | Viscosity     | Vinyl Eq/kg | Index | Density | Price/100g | Price/3kg |  |
| VQM-135* | DMS-V41       | 4000-6000     | 0.2-0.3     | 1.405 | 1.02    | \$19.00    | \$285.00  |  |
| VQM-146* | DMS-V46       | 60,000-70,000 | 0.18-0.23   | 1.406 | 1.02    | \$21.00    | \$315.00  |  |
| VQX-221  | 50% in xylene |               | 0.4-0.6     |       | 1.05    | \$21.00    | \$315.00  |  |

\*20-25% Q-resin


Vinyl Q resins are clear reinforcing additives for addition cure elastomers.



| Vinylmethylsiloxane HomopolymersTSC |             |           |         |            |           |  |  |
|-------------------------------------|-------------|-----------|---------|------------|-----------|--|--|
| Code                                | Description | Viscosity | Density | Price/100g | Price/3kg |  |  |
| VMS-005                             | cyclics     | 3-7       | 0.99    | \$45.00    | \$240.00  |  |  |
| VMS-T11*                            | linear      | 7-15      | 0.96    | \$110.00   |           |  |  |
| *010 [(0007 07                      | 0           |           |         |            |           |  |  |

\*CAS: [68037-87-6]

These materials are reactive intermediates and monomers.



#### Vinyl T-structure Polymers

| Branch Point | <b>Branch</b> Terminus | Viscosity    | Density            | Price/100g              |
|--------------|------------------------|--------------|--------------------|-------------------------|
| Vinyl        | Methyl                 | 50-75        | 0.97               | \$48.00                 |
| Methyl       | Vinyl                  | 300-500      | 0.99               | \$110.00                |
|              | Vinyl                  | Vinyl Methyl | Vinyl Methyl 50-75 | Vinyl Methyl 50-75 0.97 |

\*CAS: [126581-51-9] TSCA

These materials are additives and modifiers for addition cure and activated cure elastomers.

$$H_{3}C \xrightarrow{CH_{3}} \begin{pmatrix} CH_{2} \\ H \\ CH \\ I \\ CH_{3} \end{pmatrix} \xrightarrow{R} \begin{pmatrix} R \\ I \\ Si \\ CH_{3} \end{pmatrix} \xrightarrow{CH_{3}} \begin{pmatrix} CH_{3} \\ I \\ Si \\ CH_{3} \end{pmatrix} \xrightarrow{CH_{3}} \begin{pmatrix} CH_{3} \\ I \\ Si \\ CH_{3} \end{pmatrix} \xrightarrow{R} \xrightarrow{CH_{3}} \begin{pmatrix} CH_{3} \\ I \\ Si \\ CH_{3} \end{pmatrix} \xrightarrow{R} \xrightarrow{CH_{3}} \xrightarrow{CH_{3}$$

#### VinylMethylsiloxane Terpolymer

| Code     | Viscosity | Molecular Weight | Density | Refractive Index | Price/100g | Price/1kg |
|----------|-----------|------------------|---------|------------------|------------|-----------|
| VAT-4326 | 500-700   | 10,000-12,000    | 0.93    | 1.437            | \$39.00    | \$273.00  |

(3-5% Vinylmethylsiloxane)-(15-20% MethoxypolyethylenoxypropylMethylSiloxane)-(Dimethylsiloxane) terpolymer

| Code     | Viscosity | Molecular Weight | Density | <b>Refractive Index</b> | Price/100g | Price/1kg |
|----------|-----------|------------------|---------|-------------------------|------------|-----------|
| VBT-1323 | 200-400   | 8000-12000       | 1.02    | 1.431                   | \$39.00    | \$273.00  |

(3-5% Vinylmethylsiloxane)-(35-40% PhenylmethylSiloxane)-(Dimethylsiloxane) terpolymer

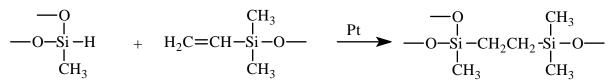
| Code     | Viscosity | Molecular Weight | Density | Refractive Index | Price/100g | Price/1kg |
|----------|-----------|------------------|---------|------------------|------------|-----------|
| VPT-1323 | 250-350   | 2500-3000        | 1.03    | 1.467            | \$48.00    | \$336.00  |

Vinyl-alkyl terpolymers are used in hybrid organic polymer-silicone applications. Vinyl-polyethyleneoxy functional terpolymers reduce silicone hydrophobicity. Vinyl-phenyl terpolymers are used in refractive index match applications.

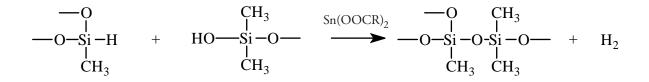
$$H_{2}C = HC - Si - CH_{3} \begin{pmatrix} CH_{2} \\ I \\ CH \\ I \\ Si - O \\ OCH_{3} \end{pmatrix} M = OCH_{3} \begin{pmatrix} OCH_{3} \\ I \\ Si - O \\ I \\ OCH_{3} \end{pmatrix} M = OCH_{3}$$

| Vinylmethoxysi | loxane Homopolym | CAS: [131 | 298-48-1] TSCA |            |           |
|----------------|------------------|-----------|----------------|------------|-----------|
| Code           | Description      | Viscosity | Density        | Price/100g | Price/1kg |
| VMM-010*       | oligomer         | 8 - 12    | 1.10           | \$36.00    | \$252.00  |
| *D I. 1 / 29   | -                |           |                |            |           |

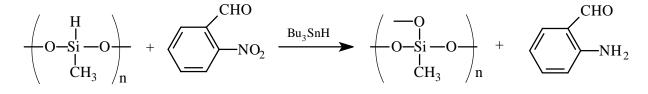
\*R.I.: 1.428


These materials are employed as crosslinking agents for neutral cure RTV's and as coupling agents in polyethylene for wire and cable applications.

#### ≡Si-H


## Hydride Functional Polymers

Hydride functional siloxanes undergo three main classes of reactivity: hydrosilylation, dehydrogenative coupling and hydride transfer.


#### Hydrosilylation



## **Dehydrogenative Coupling**



#### Reduction



#### Hydrosilylation - Addition Cure

The hydrosilylation of vinyl functional siloxanes by hydride functional siloxanes is the basis of addition cure chemistry used in 2-part RTVs and LTVs<sup>1,2</sup>. The most widely used materials for these applications are methylhydrosiloxane-dimethylsiloxane copolymers which have more readily controlled reactivity than the homopolymers and result in tougher polymers with lower cross-link density. The preferred catalysts for the reactions are platinum complexes such as SIP6830.0 and SIP6832.0 In principle, the reaction of hydride functional siloxanes with vinyl functional siloxanes takes place at 1:1 stoichiometry. For filled systems, the ratio of hydride to vinyl is much higher, ranging from 1.3:1 to 4.5:1. The optimum cure ratio is usually determined by measuring the hardness of cured elastomers at different ratios. Phenyl substituted

<sup>&</sup>lt;sup>1</sup>E. Warrick et al, Rubber Chem. Tech., 52(3), 437, 1979

<sup>&</sup>lt;sup>2</sup>O. Dolgov et al, Organosilicon Liquid Rubbers, Int'l Poly. Sci. & Techn., Monograph #1, RAPRA, 1975

hydrosiloxanes are used to crosslink phenylsiloxanes because of their greater solubility and closer refractive index match. The following chart gives some examples of starting ratios for common polymers and crosslinkers calculated at 1.5 Hydride to Vinyl ratio.

| Hydrosiloxane<br>Vinylsiloxane | HMS-013 | HMS-151 | HMS-301 |
|--------------------------------|---------|---------|---------|
| DMS-V31                        | 80.8    | 4.2     | 2.1     |
| DMS-V41                        | 11.5    | 1.8     | 0.9     |
| PDV-0341                       | 11.9    | 1.9     | 0.9     |

Starting Ratios of Hydride Functional Siloxanes (parts) to 100 parts of Vinylsiloxane\*

\* formulation is based on 1.5 Si-H to 1 CH<sub>2</sub>=CH-Si; filled formulations may require up to 3x the amount listed

The hydrosilylation of olefins is utilized to generate alkyl and arylalkyl substituted siloxanes which form the basis of organic compatible silicone fluids. The hydrosilylation of functional olefins provides the basis for formation of silicone block polymers.

## Dehydrogenative Coupling - Water Repellency, Foamed Silicones

Hydroxyl functional materials react with hydride functional siloxanes in the presence bis(2-ethyl-hexanoate)tin, dibutyldilauryltin, zinc octoate, iron octoate or a variety of other metal salt catalysts. The reaction with hydroxylic surface groups is widely used to impart waterrepellency to glass, leather, paper and fabric surfaces and powders. A recent application is in the production of water-resistant gypsum board. Application is generally from dilute (0.5-2.0%) solution in hydrocarbons or as an emulsion. The coatings are generally cured at 110-150°C. Polymethylhydrosiloxane is most commonly employed. Polyethylhydrosiloxane imparts waterrepellency, but has greater organic compatibility.

Silanol terminated polydimethylsiloxanes react with hydride functional siloxanes to produce foamed silicone materials. In addition to the formal chemistry described above, the presence of oxygen and moisture also influence cross-link density and foam structure.

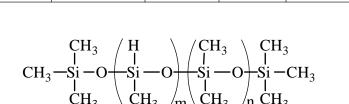
## Reduction

Polymethylhydrosiloxane is a versatile low cost hydride transfer reagent. It has a hydride equivalent weight of 60. Reactions are catalyzed by Pd<sup>0</sup> or dibutyltinoxide. The choice of reaction conditions leads to chemoselective reduction, e.g. allyl reductions in the presence of ketones and aldehydes.<sup>3,4,5</sup> Esters are reduced to primary alcohols in the presence of Ti(OiPr)<sub>4</sub>.<sup>6</sup>

## **Physical Properties**

Polymethylhydrosiloxanes exhibit the highest compressibility of the silicone fluids, 9.32% at 20,000 psi and the lowest viscosity temperature coefficient, 0.50.

<sup>&</sup>lt;sup>3</sup>J. Lipowitz et al, J. Org. Chem., *38*, 162, 1973


<sup>&</sup>lt;sup>4</sup>E. Keinan et al, Israel. J. Chem., 24, 82, 1984; J. Org. Chem., 48, 3545, 1983

<sup>&</sup>lt;sup>5</sup>T. Mukaiyama et al, Chemy Lett., 1727, 1983

<sup>&</sup>lt;sup>6</sup> M. Reding et al, J. Org. Chem., 60, 7884, 1995.

| CH3             | $/ CH_3$         | $\setminus CH_3$  |
|-----------------|------------------|-------------------|
| H - Si - O -    |                  |                   |
| H-31-07         |                  | /                 |
| ĊH <sub>3</sub> | $\setminus CH_3$ | /mĊH <sub>3</sub> |

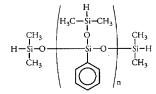
Hydride Terminated PolyDimethylsiloxanes CAS: [70900-21-9] TSCA Molecular Specific Refractive Code Weight % H Gravity Price/100g Price/1 kg Viscosity Index DMS-H03 2 - 3 400-500 0.5 0.90 1.395 \$39.00 \$234.00 DMS-H21 1.403 100 6000 0.04 0.97 \$68.00 DMS-H25 500 17,200 0.01 0.97 1.403 \$45.00 \$270.00 DMS-H31 1000 28,000 0.007 0.97 1.403 \$45.00 \$270.00 DMS-H41 10,000 62,700 \$270.00 0.003 0.97 1.403 \$45.00



#### MethylHydrosiloxane - Dimethylsiloxane Copolymers

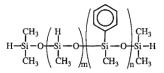
CAS: [68037-59-2] TSCA

|         |            | Molecular | Mole %   | Specific | Refractive |            |            |
|---------|------------|-----------|----------|----------|------------|------------|------------|
| Code    | Viscosity  | Weight    | (MeHSiO) | Gravity  | Index      | Price/100g | Price/3 kg |
| HMS-013 | 6000-8000  | 55,000    | 0.5-1.0  | 0.97     | 1.404      | \$35.00    | \$385.00   |
| HMS-031 | 25-35      | 1900-2000 | 3-4      | 0.97     | 1.401      | \$60.00    |            |
| HMS-064 | 9000-11000 | 62,000    | 5-7      | 0.97     | 1.403      | \$64.00    |            |
| HMS-071 | 25-35      | 1900-2000 | 6-7      | 0.97     | 1.401      | \$60.00    |            |
| HMS-151 | 25-35      | 1900-2000 | 15-18    | 0.97     | 1.400      | \$24.00    | \$192.00   |
| HMS-301 | 25-35      | 1900-2000 | 25-30    | 0.98     | 1.399      | \$19.00    | \$148.00   |
| HMS-501 | 10-15      | 900-1200  | 50-55    | 0.96     | 1.394      | \$24.00    | \$192.00   |


 $CH_{3} \xrightarrow{CH_{3}}_{I} \xrightarrow{H}_{O} \xrightarrow{CH_{3}}_{I} \xrightarrow{H}_{O} \xrightarrow{CH_{3}}_{I} \xrightarrow{H}_{O} \xrightarrow{H}_{$ 

| polyMethylHy | drosiloxanes |           | Tg: -119° | V.T.C: 0.50 |            | CAS: [63148- | 57-2] TSCA |
|--------------|--------------|-----------|-----------|-------------|------------|--------------|------------|
|              |              | Molecular | Mole %    | Specific    | Refractive |              |            |
| Code         | Viscosity    | Weight    | (MeHSiO)  | Gravity     | Index      | Price/100g   | Price/3 kg |
| HMS-991      | 15-25        | 1500-1900 | 100       | 0.98        | 1.395      | \$14.00      | \$96.00    |
| HMS-992      | 25-35        | 1900-2200 | 100       | 0.99        | 1.396      | \$24.00      | \$168.00   |

## polyEthylHydrosiloxane


| CAS: [24979-95-1] |  |
|-------------------|--|
|                   |  |
|                   |  |

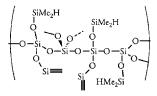
|         |           | Mole %   | Specific | Refractive |           |            |
|---------|-----------|----------|----------|------------|-----------|------------|
| Code    | Viscosity | (EtHSiO) | Gravity  | Index      | Price/25g | Price/100g |
| HES-992 | 75-125    | 99-100   | 0.99     | 1.422      | \$37.00   | \$120.00   |



#### polyPhenyl - (DiMethylHydrosiloxy)siloxane, hydride terminated

|         |           | Mole %                    | Specific | Refractive |           |            |
|---------|-----------|---------------------------|----------|------------|-----------|------------|
| Code    | Viscosity | $[(HMe_2SiO)(C_6H_5Si)O]$ | Gravity  | Index      | Price/25g | Price/100g |
| HDP-111 | 50-80     | 99-100                    | 1.01     | 1.463      | \$74.00   | \$240.00   |



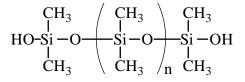

| MethylHydrosiloxane - PhenylMethylsiloxane copolymer, hydride terminated CAS: [115487-49-5] TSCA |           |          |         |       |           |            |  |  |  |
|--------------------------------------------------------------------------------------------------|-----------|----------|---------|-------|-----------|------------|--|--|--|
|                                                                                                  |           |          |         |       |           |            |  |  |  |
| Code                                                                                             | Viscosity | (MeHSiO) | Gravity | Index | Price/25g | Price/100g |  |  |  |
| HPM-502*                                                                                         | 75-110    | 45-50    | 1.08    | 1.500 | \$50.00   | \$160.00   |  |  |  |
| * 1 NAVL 20                                                                                      | 0         |          |         |       |           |            |  |  |  |

\*unit MW: 200

$$\begin{array}{c} \begin{array}{c} CH_{3}\\ H\\ CH_{3}-Si-O\\ CH_{3}\end{array} \begin{pmatrix} H\\ i\\ Si-O\\ CH_{3}\end{array} \begin{pmatrix} CH_{3}\\ i\\ Si-O\\ CH_{3} \end{pmatrix} \begin{pmatrix} CH_{3}\\ i\\ CH_$$

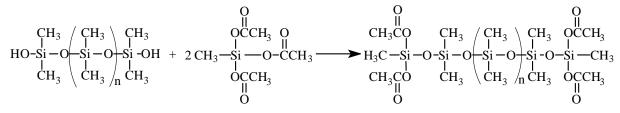
# MethylHydrosiloxane - OctylMethylsiloxane copolymerCAS: [68554-69-8]TSCA

|         |           | Mole %   | Specific | Refractive |           |            |
|---------|-----------|----------|----------|------------|-----------|------------|
| Code    | Viscosity | (MeHSiO) | Gravity  | Index      | Price/25g | Price/100g |
| HAM-303 | 300-600   | 25-30    | 0.91     | 1.440      | \$60.00   | \$195.00   |



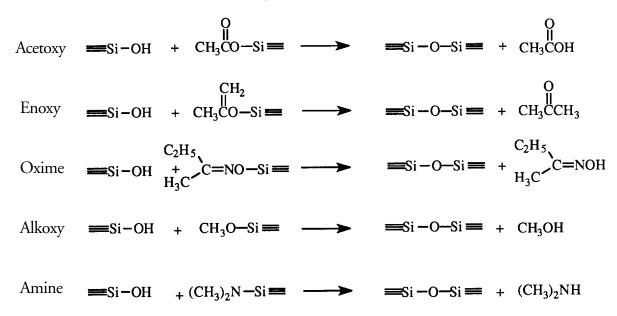

#### Hydride Q Resin

|         |           |               | Specific | Refractive |           |            |
|---------|-----------|---------------|----------|------------|-----------|------------|
| Code    | Viscosity | Hydride Eq/kg | Gravity  | Index      | Price/25g | Price/100g |
| HQM-105 | 3-6       | 7.6-9.2       | 0.94     | 1.410      | \$36.00   | \$117.00   |


#### ≡Si-OH

#### **Silanol Functional Polymers**




Terminal silanol groups render polydimethylsiloxanes susceptible to condensation under both mild acid and base conditions. They are intermediates for most room temperature vulcanizeable (RTV) silicones. Low molecular weight silanol fluids are generally produced by kinetically controlled hydrolysis of chlorosilanes. Higher molecular weight fluids can be prepared by equilibrating low molecular weight silanol fluids with cyclics, equilibrium polymerization of cyclics with water under pressure or methods of polymerization that involve hydrolyzeable end caps such as methoxy groups. Low molecular weight silanol fluids can be condensed to higher molecular weight silanol fluids by utilization of chlorophosphazene (PNCl<sub>2</sub>) catalysts.

**Condensation cure** one-part and two-part RTV systems are formulated from silanol terminated polymers with molecular weights ranging from 15,000 to 150,000. One-part systems are the most widely used. One-part systems are crosslinked with moisture-sensitive multi-functional silanes in a two stage reaction. In the first stage, after compounding with fillers, the silanol is reacted with an excess of multi-functional silane. The silanol is in essence displaced by the silane. This is depicted below for an acetoxy system.



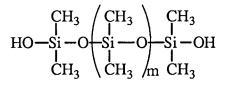
The silicone now has two groups at each end that are extremely susceptible to hydrolysis. The silicone is stored in this form and protected from moisture until ready for use. The second stage of the reaction takes place upon use. When the end groups are exposed to moisture, a rapid crosslinking reaction takes place.

The most common moisture cure systems are:



The crosslinking reaction of alkoxy systems are catalyzed by titanates, frequently in combination with tin compounds and other metal-organics. Acetoxy one-part systems usually rely solely on tin catalysts. The tin level in one-part RTV systems is minimally about 50ppm with a ratio of ~2500:1 for Si-OR to Sn, but typical formulations have up to ten times the minimum. Other specialty crosslinking systems include benzamido and mixed alkoxyamino. The organic (non-hydrolyzeable) substituents on the crosslinkers influence the speed of cure. Among the widely used crosslinkers vinyl substituted is the fastest: vinyl > methyl >> phenyl.

Two-part condensation cure silanol systems employ ethylsilicates (polydiethoxysiloxanes) such as PSI-021 as crosslinkers and dialkyltincarboxylates as accelerators. Tin levels in these systems are minimally 500ppm, but typical formulations have up to ten times the minimum. Two-part systems are inexpensive, require less sophisticated compounding equipment, and are not subject to inhibition.

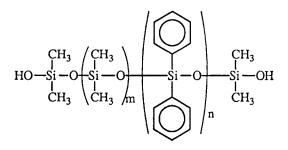

The following is a starting point formulation for a two-part RTV.

| 10:1 ratio of A to B.                                                                              |               |     |           |                         |     |  |  |  |
|----------------------------------------------------------------------------------------------------|---------------|-----|-----------|-------------------------|-----|--|--|--|
| Part A. Part B                                                                                     |               |     |           |                         |     |  |  |  |
| DMS-S45                                                                                            | silanol fluid | 70% | DMS-T21   | 100 cSt. silicone fluid | 50% |  |  |  |
| SIS6964.0                                                                                          | silica powder | 28% | SIS6964.0 | silica powder           | 45% |  |  |  |
| PSI-021                                                                                            | ethylsilicate | 2%  | SND3260   | DBTL tin catalyst       | 5%  |  |  |  |
| This low tear strength formulation can be improved by substituting fumed silica for silica powder. |               |     |           |                         |     |  |  |  |

Incorporation of hydride functional (Si-H) siloxanes into silanol elastomer formulations results in foamed structures. The blowing agent is hydrogen which forms as a result of silanol condensation with hydrosiloxanes. Foam systems are usually two components which are compounded separately and mixed shortly before use.

Silanol terminated diphenylsiloxane copolymers are employed to modify low temperature properties or optical properties of silicone RTV's. They are also utilized as flow control agents in polyester coatings. Diphenylsiloxane homopolymers are glassy materials with softening points >120°C that are used to formulate coatings and impregnants for electrical and nuclear applications.

The reactivity of silanol fluids is utilized in applications other than RTV's. Low viscosity silanol fluids are employed as filler treatments and structure control additives in silicone rubber compounding. Intermediate viscosity, 1000-10,000 cSt fluids can be applied to textiles as durable fabric softeners. High viscosity silanol terminated fluids form the matrix component in tackifiers and pressure sensitive adhesives.




#### Silanol Terminated PolyDimethylsiloxanes

CAS: [70131-67-8] TSCA

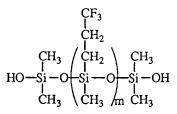
|                | Molecular                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Refractive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Viscosity      | Weight                                                                                                                                                                | % (OH)                                                                                                                                                                                                                                                                                                                                                                                                             | (OH) - Eq/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gravity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Price/100g                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Price/3kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Price/16kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 20-35          | 400-700                                                                                                                                                               | 4.0-6.0                                                                                                                                                                                                                                                                                                                                                                                                            | 2.3-3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$19.00                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$124.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$496.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 45-85          | 1500-2000                                                                                                                                                             | 0.9-1.2                                                                                                                                                                                                                                                                                                                                                                                                            | 0.53-0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$19.00                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$124.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$496.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 90-120         | 4200                                                                                                                                                                  | 0.8-0.9                                                                                                                                                                                                                                                                                                                                                                                                            | 0.47-0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$14.00                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$96.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$240.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 700-800        | 18,000                                                                                                                                                                | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                | 0.11-0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$14.00                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$96.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$240.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1000           | 26,000                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                | 0.055-0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$14.00                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$96.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$240.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2000           | 36,000                                                                                                                                                                | 0.09                                                                                                                                                                                                                                                                                                                                                                                                               | 0.050-0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$14.00                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$96.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$240.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3500           | 43,500                                                                                                                                                                | 0.08                                                                                                                                                                                                                                                                                                                                                                                                               | 0.045-0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$14.00                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$96.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$240.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5000           | 49,000                                                                                                                                                                | 0.07                                                                                                                                                                                                                                                                                                                                                                                                               | 0.039-0.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$16.00                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$110.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$256.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8000           | 58,000                                                                                                                                                                | 0.06                                                                                                                                                                                                                                                                                                                                                                                                               | 0.034-0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$16.00                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$110.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$256.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 18,000         | 77,000                                                                                                                                                                | 0.04                                                                                                                                                                                                                                                                                                                                                                                                               | 0.023-0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$19.00                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$124.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$296.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50,000         | 110,000                                                                                                                                                               | 0.03                                                                                                                                                                                                                                                                                                                                                                                                               | 0.015-0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$19.00                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$124.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$296.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ·              |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 75,000-115,000 | 139,000                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                               | 0.010-0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$34.00                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$240.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | 20-35           45-85           90-120           700-800           1000           2000           3500           5000           8000           18,000           50,000 | Viscosity         Weight           20-35         400-700           45-85         1500-2000           45-85         1500-2000           90-120         4200           700-800         18,000           1000         26,000           2000         36,000           3500         43,500           5000         49,000           8000         58,000           18,000         77,000           50,000         110,000 | Viscosity         Weight         % (OH)           20-35         400-700         4.0-6.0           45-85         1500-2000         0.9-1.2           90-120         4200         0.8-0.9           700-800         18,000         0.2           1000         26,000         0.1           2000         36,000         0.09           3500         43,500         0.08           5000         49,000         0.07           8000         58,000         0.06           18,000         77,000         0.04           50,000         110,000         0.03 | Viscosity         Weight         % (OH)         (OH) - Eq/kg           20-35         400-700         4.0-6.0         2.3-3.5           45-85         1500-2000         0.9-1.2         0.53-0.70           90-120         4200         0.8-0.9         0.47-0.53           700-800         18,000         0.2         0.11-0.13           1000         26,000         0.1         0.055-0.060           2000         36,000         0.09         0.050-0.055           3500         43,500         0.08         0.047-0.53           5000         49,000         0.1         0.055-0.060           2000         36,000         0.09         0.050-0.055           3500         43,500         0.08         0.045-0.050           1         1000         26,000         0.07         0.039-0.043           8000         58,000         0.06         0.034-0.037           1         8,000         77,000         0.04         0.023-0.025           50,000         110,000         0.03         0.015-0.017 | ViscosityWeight% (OH)(OH) - Eq/kgGravity $20-35$ 400-7004.0-6.0 $2.3-3.5$ $0.95$ $45-85$ 1500-2000 $0.9-1.2$ $0.53-0.70$ $0.96$ 90-1204200 $0.8-0.9$ $0.47-0.53$ $0.97$ $700-800$ 18,000 $0.2$ $0.11-0.13$ $0.97$ $1000$ 26,000 $0.1$ $0.055-0.060$ $0.98$ $2000$ $36,000$ $0.09$ $0.050-0.055$ $0.98$ $3500$ $43,500$ $0.08$ $0.045-0.050$ $0.98$ $5000$ $49,000$ $0.07$ $0.039-0.043$ $0.98$ $8000$ $58,000$ $0.04$ $0.023-0.025$ $0.98$ $18,000$ $77,000$ $0.04$ $0.023-0.025$ $0.98$ $18,000$ $110,000$ $0.03$ $0.015-0.017$ $0.98$ | ViscosityWeight% (OH)(OH) - Eq/kg $\widehat{Gravity}$ Index20-35400-7004.0-6.02.3-3.50.951.40145-851500-20000.9-1.20.53-0.700.96140290-12042000.8-0.90.47-0.530.971.402700-80018,0000.20.11-0.130.971.403100026,0000.10.055-0.0600.981.403200036,0000.090.050-0.0550.981.403350043,5000.080.045-0.0500.981.403500049,0000.070.039-0.0430.981.403800058,0000.060.034-0.0370.981.40318,00077,0000.040.023-0.0250.981.40350,000110,0000.030.015-0.0170.981.403 | ViscosityWeight% (OH)(OH) - Eq/kgGravityIndexPrice/100g $20-35$ $400-700$ $4.0-6.0$ $2.3-3.5$ $0.95$ $1.401$ \$19.00 $45-85$ $1500-2000$ $0.9-1.2$ $0.53-0.70$ $0.96$ $1402$ \$19.00 $90-120$ $4200$ $0.8-0.9$ $0.47-0.53$ $0.97$ $1.402$ \$14.00 $700-800$ $18,000$ $0.2$ $0.11-0.13$ $0.97$ $1.403$ \$14.00 $2000$ $26,000$ $0.1$ $0.055-0.060$ $0.98$ $1.403$ \$14.00 $2000$ $36,000$ $0.09$ $0.050-0.055$ $0.98$ $1.403$ \$14.00 $3500$ $43,500$ $0.08$ $0.045-0.050$ $0.98$ $1.403$ \$14.00 $5000$ $49,000$ $0.07$ $0.039-0.043$ $0.98$ $1.403$ \$16.00 $8000$ $58,000$ $0.06$ $0.034-0.037$ $0.98$ $1.403$ \$16.00 $8000$ $77,000$ $0.04$ $0.023-0.025$ $0.98$ $1.403$ \$19.00 $10,000$ $110,000$ $0.03$ $0.015-0.017$ $0.98$ $1.403$ \$19.00 | ViscosityWeight% (OH)(OH) - Eq/kgGravityIndexPrice/100gPrice/3kg $20-35$ 400-7004.0-6.0 $2.3-3.5$ $0.95$ $1.401$ \$19.00\$124.00 $45-85$ 1500-2000 $0.9-1.2$ $0.53-0.70$ $0.96$ $1402$ \$19.00\$124.00 $90-120$ 4200 $0.8-0.9$ $0.47-0.53$ $0.97$ $1.402$ \$14.00\$96.00 $700-800$ 18,000 $0.2$ $0.11-0.13$ $0.97$ $1.403$ \$14.00\$96.00 $700-800$ 18,000 $0.1$ $0.055-0.060$ $0.98$ $1.403$ \$14.00\$96.00 $2000$ $36,000$ $0.09$ $0.050-0.055$ $0.98$ $1.403$ \$14.00\$96.00 $2000$ $36,000$ $0.09$ $0.045-0.050$ $0.98$ $1.403$ \$14.00\$96.00 $2000$ $36,000$ $0.07$ $0.039-0.043$ $0.98$ $1.403$ \$14.00\$96.00 $3500$ $43,500$ $0.06$ $0.034-0.037$ $0.98$ $1.403$ \$16.00\$110.00 $8000$ $58,000$ $0.04$ $0.023-0.025$ $0.98$ $1.403$ \$19.00\$124.00 $18,000$ $77,000$ $0.04$ $0.023-0.025$ $0.98$ $1.403$ \$19.00\$124.00 $90,000$ $110,000$ $0.03$ $0.015-0.017$ $0.98$ $1.403$ \$19.00\$124.00 $90,000$ $110,000$ $0.03$ $0.015-0.017$ $0.98$ $1.403$ \$19.00\$124.00 |

\*also available as an emulsion



#### Silanol Terminated Diphenylsiloxane - Dimethylsiloxane Copolymers

|            |           |                  |           |            |         |             | TSCA      |
|------------|-----------|------------------|-----------|------------|---------|-------------|-----------|
|            |           | Mole %           | Molecular | Refractive |         |             |           |
| Code       | Viscosity | Diphenylsiloxane | Weight    | Index      | % (OH)  | Price/100 g | Price/3kg |
| PDS-0332*  | 2000-3000 | 2.5-3.5          | 35,000    | 1.420      | 0.7-1.3 | \$45.00     | \$380.00  |
| PDS-1615** | 50-60     | 14-18            | 900-1000  | 1.473      | 3.4-4.8 | \$39.00     | \$340.00  |
|            | -         |                  |           |            |         | •           |           |


\*CAS: [68951-93-9]

\*\*CAS: [68083-14-7]

### Silanol Terminated PolyDiphenylsiloxane

Tm: 142-155°; contains cyclics

|          |              | Mole %           | Molecular | Refractive |         |             |           |
|----------|--------------|------------------|-----------|------------|---------|-------------|-----------|
| Code     | Viscosity    | Diphenylsiloxane | Weight    | Index      | % (OH)  | Price/100 g | Price/1kg |
| PDS-9931 | glassy solid | 100              | 1000-1400 | 1.610      | 3.4-2.4 | \$64.00     | \$448.00  |



#### Silanol Terminated PolyTrifluoropropylMethylsiloxane

CAS: [68607-77-2] TSCA

CAS: [63148-59-4] TSCA

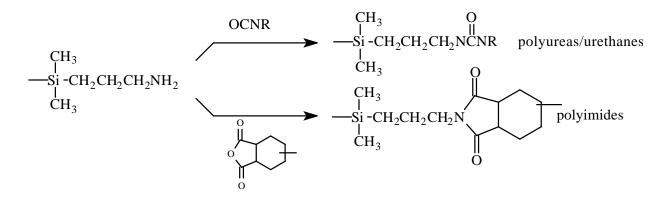
|          |           | Mole %                                                | Molecular | Refractive |        | Specific |             |
|----------|-----------|-------------------------------------------------------|-----------|------------|--------|----------|-------------|
| Code     | Viscosity | CF <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> MeSiO | Weight    | Index      | % (OH) | Gravity  | Price/100 g |
| FMS-9921 | 40-150    | 100                                                   | 550-800   | 1.379      | 5-7%   | 1.27     | \$160.00    |

#### Silanol-Trimethylsilyl Modified Q Resins

|         |         | -         |         |          |             | CAS: [5627 | 5-01-5] TSCA |
|---------|---------|-----------|---------|----------|-------------|------------|--------------|
|         | Wgt %   | Molecular |         | Base     |             |            |              |
| Code    | Q resin | Weight    | %(OH)   | Resin    | solvent     | Price/100g | Price/3 kg   |
| SQO-299 | 100     | 3000-4000 | 1.7-2.0 |          |             | \$39.00    | \$380.00     |
| SQT-221 | 60      | 3000-4000 |         |          | 40% toluene | \$19.00    | \$124.00     |
| SQS-261 | 35-40   | 3000-4000 |         | DMS-S61* | 40% toluene | \$29.00    | \$196.00     |

\*300,000-400,000 MW silanol terminated polydimethylsiloxane

Silanol terminated vinylmethylsiloxane copolymers- see Vinylmethylsiloxane Copolymers

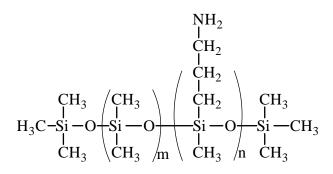

#### )

# $\equiv$ SiCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>

## Aminofunctional Silicones

Aminoalkylfunctional silicones have a broad array of applications as a result of their chemical reactivity, their ability to form hydrogen bonds and, particularly in the case of diamines, their chelating ability. Additional reactivity can be built into aminoalkylgroups in the form of alkoxy groups. Aminoalkylsiloxanes are available in the three classes of structures typical for silicone polymers: terminated, pendant group and T-structure.

Aminopropyl terminated polydimethylsiloxanes react to form a variety of polymers including polyimides, polyureas and polyurethanes. Block polymers based on these materials are becoming increasingly important in microelectronic (passivation layer) and electrical (low-smoke generation insulation) applications. They are also employed in specialty lubricant and surfactant applications.




Amino functionality pendant from the siloxane backbone is available in two forms: (aminopropyl)-methylsiloxane-dimethylsiloxane copolymers and (aminoethylaminopropyl)methylsiloxane-dimethylsiloxane copolymers. They are frequently used in modification of polymers such as epoxies and urethanes, internal mold releases for nylons and as lubricants, release agents and components in coatings for textiles and polishes.

Aminoalkyl T-structure silicones are primarily used as surface treatments for textiles and finished metal polishes (e.g. automotive car polishes). The resistance to wash-off of these silicones is frequently enhanced by the incorporation of alkoxy groups which slowly hydrolyze and form crosslink or reactive sites under the influence of the amine.

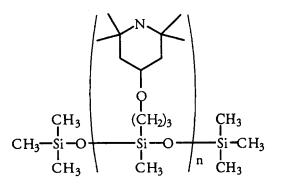
#### Aminopropyl Terminated PolyDimethylsiloxanes

|         |           | CAS: [106214-84-0] |               |          |            |            |            |
|---------|-----------|--------------------|---------------|----------|------------|------------|------------|
|         |           | Molecular          |               | Specific | Refractive |            |            |
| Code    | Viscosity | Weight             | % Amine (NH2) | Gravity  | Index      | Price/100g | Price/1 kg |
| DMS-A11 | 10-15     | 850-900            | 3.2-3.8       | 0.98     | 1.412      | \$72.00    | \$432.00   |
| DMS-A12 | 20-30     | 900-1000           | 3.0-3.2       | 0.98     | 1.411      | \$51.00    | \$306.00   |
| DMS-A15 | 50-60     | 3000               | 1.0-1.2       | 0.97     | 1.408      | \$43.00    | \$258.00   |
| DMS-A21 | 100-120   | 5000               | 0.6-0.7       | 0.98     | 1.407      | \$39.00    | \$234.00   |
| DMS-A32 | 2000      | 27,000             | 0.08-0.09     | 0.98     | 1.404      | \$29.00    | \$174.00   |



| Amino | opropy                                             | CAS: [9936] | 3-37-8] TSCA |                |         |       |            |            |
|-------|----------------------------------------------------|-------------|--------------|----------------|---------|-------|------------|------------|
|       | Molecular Mole % (Aminopropyl) Specific Refractive |             |              |                |         |       |            |            |
| Co    | ode                                                | Viscosity   | Weight       | MethylSiloxane | Gravity | Index | Price/100g | Price/3 kg |
| AMS   | 5-132                                              | 80-100      | 4500-5500    | 2-3            | 0.96    | 1.404 | \$29.00    | \$174.00   |
| AMS   | 5-152                                              | 120-180     | 7000-8000    | 4-5            | 0.97    |       | \$29.00    | \$174.00   |
| AMS   | 5-162                                              | 80-120      | 4000-5000    | 6-7            | 0.97    |       | \$29.00    | \$174.00   |

| AminoethylaminopropylMethylsiloxane - Dimethylsiloxane Copolymers CAS: [71750-79-3] TSCA |           |  |                       |         |       |            |            |  |  |  |  |
|------------------------------------------------------------------------------------------|-----------|--|-----------------------|---------|-------|------------|------------|--|--|--|--|
| Mole % (Diamino- Specific Refractive                                                     |           |  |                       |         |       |            |            |  |  |  |  |
| Code                                                                                     | Viscosity |  | propyl)MethylSiloxane | Gravity | Index | Price/100g | Price/3 kg |  |  |  |  |
| AMS-233                                                                                  | 1200-1500 |  | 2 - 4                 | 0.98    | 1.407 | \$34.00    | \$238.00   |  |  |  |  |


| AminoethylaminoisobutylMethylsiloxane - Dimethylsiloxane Copolymers CAS: [106842-44-8] TSG |           |  |                         |         |       |            |            |  |  |  |
|--------------------------------------------------------------------------------------------|-----------|--|-------------------------|---------|-------|------------|------------|--|--|--|
| Mole % (Diamino- Specific Refractive                                                       |           |  |                         |         |       |            |            |  |  |  |
| Code                                                                                       | Viscosity |  | isobutyl)MethylSiloxane | Gravity | Index | Price/100g | Price/3 kg |  |  |  |
| AMS-242                                                                                    | 120-150   |  | 3-5                     | 0.97    | 1.404 | \$48.00    | \$336.00   |  |  |  |

| Aminoethylan | ninopropylMe | thoxysiloxane - Di | <b>s</b> with brand    | ch structure | CAS: [6792 | 3-07-3] TSCA |            |
|--------------|--------------|--------------------|------------------------|--------------|------------|--------------|------------|
|              |              |                    | Mole % (Diamino-       | Specific     |            |              |            |
| Code         | Viscosity    |                    | propyl)MethoxySiloxane | Gravity      |            | Price/100g   | Price/3 kg |
| ATM-1112     | 100-200      |                    | 0.5-1.5                | 0.97         |            | \$24.00      | \$144.00   |
| ATM-1322*    | 200-300      |                    | 2 - 4                  | 0.97         |            | \$29.00      | \$174.00   |

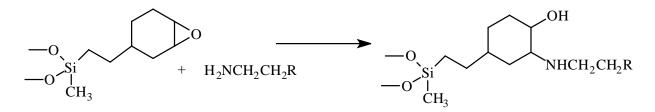
\*also available as an emulsion

# Hindered Amine Functional Siloxanes

Hindered Amine Light Stabilizers (HALS) may be incorporated into polysiloxane structures affording an ultraviolet light stabilizer system that is compatible with other stabilizers such as hindered phenolics and organophosphites and is strongly resistant to water extraction.



| (Tetrameth  | vlpi  | peridin | vl  | )oxv | pro  | ovlN | Neth | vlsiloxane |
|-------------|-------|---------|-----|------|------|------|------|------------|
| ( I cum cum | , •P• | Periodi | J – | Jung | P- V | ~    |      | y lonomune |


CAS: [182635-99-0] TSCA

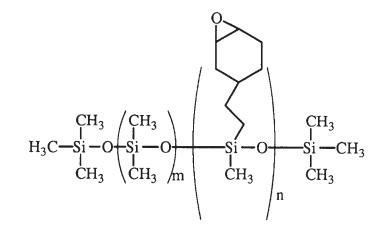
|          |           | Molecular | Specific |            |
|----------|-----------|-----------|----------|------------|
| Code     | Viscosity | Weight    | Gravity  | Price/100g |
| UBS-9912 | 15-25     | 1200-2400 | 1.00     | \$72.00    |

# $= Si-CH_2-R-CH_2CHCH_2$

#### **Epoxy Functional Silicones**

Epoxy functional silicones undergo crosslinking reactions with amines. Properties of cured epoxy silicone oil coatings or finishes vary from hydrophilic to hydrophobic depending on the epoxy content, degree of substitution and ring-opening of epoxides to form diols. The primary application for these materials is for textile finishes and epoxies for electronics. The ring-strained epoxycyclohexyl group is more reactive than the epoxypropoxy group and undergoes thermally or chemically induced reactions with nucleophiles including protic surfaces such as cellulosics. Epoxycyclohexyl functional siloxanes can also polymerize on UV exposure in the presence of weak acid donor catalysts.




An aryliodonium UV initiator for cycloaliphatic epoxides is OMAN072 described in the Catalyst Section. Epoxy functional siloxane copolymers with polyalkyleneoxide functionality provide hydrophilic textile finishes.

Epoxy functional silsesquioxanes - see specialty silsesquioxanes.

$$\begin{array}{c} O \\ H_2C - CHCH_2O(CH_2)_3 - Si - O \\ I \\ CH_3 \end{array} \xrightarrow{\begin{array}{c} CH_3 \\ I \\ CH_3 \end{array}} \xrightarrow{\begin{array}{c} CH_3 \\ I \\ CH_3 \end{array} \xrightarrow{\begin{array}{c} CH_3 \\ I \\ CH_3 \end{array}} \xrightarrow{\begin{array}{c} CH_3 \\ I \\ CH_3 \end{array}} \xrightarrow{\begin{array}{c} O \\ I \\ CH_3 \end{array} \xrightarrow{\begin{array}{c} O \\ I \\ CH_3 \end{array}} \xrightarrow{\begin{array}{c} O \\ I \\ CH_3 \end{array}} \xrightarrow{\begin{array}{c} O \\ I \\ CH_3 \end{array} \xrightarrow{\begin{array}{c} O \\ I \\ CH_3 \end{array}} \xrightarrow{\begin{array}{c} O \\ I \\ CH_3 \end{array} \xrightarrow{\begin{array}{c} O \\ I \\ CH_3 \end{array}} \xrightarrow{\begin{array}{c} O \\ I \\ CH_3 \end{array} \xrightarrow{\begin{array}{c} O \\ I \\ CH_3 \end{array}} \xrightarrow{\begin{array}{c} O \\ I \\ CH_3 \end{array} \xrightarrow{\begin{array}{c} O \\ I \\ CH_3 \end{array}} \xrightarrow{\begin{array}{c} O \\ I \\ CH_3 \end{array} \xrightarrow{\begin{array}{c} O \\ I \\ CH_3 \end{array} \xrightarrow{\begin{array}{c} O \\ I \\ CH_3 \end{array}} \xrightarrow{\begin{array}{c} O \\ I \\ CH_3 \end{array} \xrightarrow{\begin{array}{c} O \\ I \\ CH_3 \end{array} \xrightarrow{\begin{array}{c} O \\ I \\ CH_3 \end{array}} \xrightarrow{\begin{array}{c} O \\ I \\ CH_3 \end{array} \xrightarrow{\begin{array}{c} O \\ I \\ CH_3 \end{array} \xrightarrow{\begin{array}{c} O \\ I \\ CH_3 \end{array}} \xrightarrow{\begin{array}{c} O \\ I \\ CH_3 \end{array} \xrightarrow{\begin{array}{c} O \\ CH_$$

## Epoxypropoxypropyl Terminated PolyDimethylsiloxanes

|         |           | Molecular |               | Specific | Refractive |            |
|---------|-----------|-----------|---------------|----------|------------|------------|
| Code    | Viscosity | Weight    | Epoxy - Eq/kg | Gravity  | Index      | Price/100g |
| DMS-E01 | 1 - 2     | 363       | 5.5           | 0.99     | 1.446      | \$78.00    |
| DMS-E12 | 20-30     | 900-1100  | 1.8 - 2.2     | 0.98     | 1.418      | \$120.00   |
| DMS-E21 | 100-140   | 4500-5500 | 0.45 - 3.5    | 0.98     | 1.408      | \$120.00   |



| (Epoxycyclol | (EpoxycyclohexylethylMethylsiloxane) Dimethylsiloxane Copolymers CAS: [6772-95-2] TSC |                     |                                                  |                     |            |             |  |  |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------|---------------------|--------------------------------------------------|---------------------|------------|-------------|--|--|--|--|--|--|
| Code         | Viscosity                                                                             | Molecular<br>Weight | Mole % (Epoxycyclohexyl)-<br>ethylMethylSiloxane | Specific<br>Gravity | Price/100g | Price/ 1 kg |  |  |  |  |  |  |
| EMS-232      | 650-800                                                                               | 18,000              | 2-3                                              | 0.98                | \$29.00    | \$174.00    |  |  |  |  |  |  |
| EMS-234      | 3000-5000                                                                             | 50,000              | 2-3                                              | 0.98                | \$56.00    | \$392.00    |  |  |  |  |  |  |

## (2-3% EpoxycyclohexylethylMethylsiloxane)(10-15% MethoxypolyalkyleneoxyMethylSiloxane)-(Dimethylsiloxane) Terpolymer CAS: [69669-36-9] TSCA

|         |           | Molecular     |              | Specific |            |             |
|---------|-----------|---------------|--------------|----------|------------|-------------|
| Code    | Viscosity | Weight        | Epoxy- Eq/kg | Gravity  | Price/100g | Price/ 1 kg |
| EBP-234 | 4000-5000 | 25,000-36,000 | 0.75-0.80    | 1.03     | \$29.00    | \$174.00    |

# $\equiv$ Si-CH<sub>2</sub>-R-(OCH<sub>2</sub>CH<sub>2</sub>)<sub>n</sub>OH

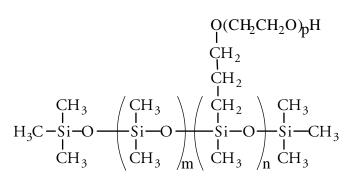
#### **Carbinol Functional Silicones**

Carbinol (Hydroxy) Functional Siloxanes

The term carbinol refers to a hydroxyl group bound to carbon (C-OH) and is frequently used in silicone chemistry to differentiate them from hydroxyl groups bound to silicon (Si-OH) which are referred to as silanols. Carbinol terminated siloxanes contain primary hydroxyl groups which are linked to the siloxane backbone by non-hydrolyzeable transition groups. Frequently a transition block of ethylene oxide or propylene oxide is used. Carbinol functional polydimethylsiloxanes may be reacted into polyurethanes, epoxies, polyesters and phenolics.

$$= Si - CH_2 - R - (OCH_2CH_2)_n OH \xrightarrow{OCNR} \xrightarrow{CH_3} O_{\parallel} OCNR + Si - CH_2CH_2CH_2OCNHR + CH_3 O_{\parallel} OCNR + CH_3 O_{\parallel}$$

Applications include additives for urethane leather finishes and as reactive internal lubricants for polyester fiber melt spinning. They are also utilized as surfactants and blend agents.


Polyethyleneoxide transition blocks are more polar than polypropyleneoxide blocks and maintain a broad range of liquid behavior. Carbinol terminated siloxanes with caprolactone transition blocks offer a highly polar component which enables compatibility in a variety of thermoplastic resins.

$$HO(CH_{2}CH_{2}O)_{m}(CH_{2})_{3} \xrightarrow{CH_{3}}_{I} \xrightarrow{CH_{3}$$

$$HO \leftarrow (CH_2)_5 - C - O \rightarrow R \leftarrow \begin{pmatrix} CH_3 \\ I \\ Si - O \end{pmatrix} - Si - R \leftarrow O - C - (CH_2)_5 \rightarrow M = O + CH_3 = O$$

## Carbinol (Hydroxyl) Terminated PolyDimethylsiloxanes

|                  |                                                                                         | Molecular             | Weight %             | Specific         | Refractive |            |           |  |
|------------------|-----------------------------------------------------------------------------------------|-----------------------|----------------------|------------------|------------|------------|-----------|--|
| Code             | Viscosity                                                                               | Weight                | Non-Siloxane         | Gravity          | Index      | Price/100g | Price/1kg |  |
| DMS-C15          | 30-50                                                                                   | 1000                  | 20                   | 0.98             | 1.417      | \$140.00   |           |  |
| DMS-C21          | 110-140                                                                                 | 4500-5500             | 4                    | 0.98             | 1.407      | \$140.00   |           |  |
| DBE-C25*         | 400-450                                                                                 | 3500-4500             | 60                   | 1.07             | 1.450      | \$38.00    | \$228.00  |  |
| DBL-C31**        | mp 52-6                                                                                 | 5700-6900             | 50                   | 1.05             |            | \$48.00    | \$288.00  |  |
| DBP-C22***       | 200-300                                                                                 | 2500-3200             | 45-55                | 0.989            | 1.434      | \$42.00    | \$252.00  |  |
| note: for DMS-C  | C15 and DMS-C2                                                                          | 1 n =1 CAS: [15632    | 27-07-0]             |                  |            |            |           |  |
| *A-B-A ethylene  | oxide - dimethylsi                                                                      | loxane - ethylene oxi | ide block polymer C  | AS: [68937-54-2] |            |            |           |  |
| **A-B-A caprolac | **A-B-A caprolactone - dimethylsiloxane - caprolactone block polymer CAS: [120359-07-1] |                       |                      |                  |            |            |           |  |
| ***A-B-A propyle | ene oxide - dimeth                                                                      | ylsiloxane - propylen | e oxide block copoly | mer              |            |            |           |  |



## (Carbinol functional)Methylsiloxane-Dimethylsiloxane Copolymers

|                                                                              |                     | Molecular             | Mole % Carbinol           | Hydroxyl  | Specific    |              |              |
|------------------------------------------------------------------------------|---------------------|-----------------------|---------------------------|-----------|-------------|--------------|--------------|
| Code                                                                         | Viscosity           | Weight                | functional MethylSiloxane | class     | Gravity     | Price/100g   | Price/1kg    |
| CMS-626                                                                      | 550-650             | 4500-5500 40          |                           | primary   | 1.09        | \$42.00      | \$252.00     |
| 0.4 equivalents of hydroxyl/kg (ca. 2 hydroxyethyleneoxypropyl groups/chain) |                     |                       |                           | 65% non-s | iloxane     | CAS: [68937  | 7-54-2] TSCA |
|                                                                              |                     |                       |                           |           |             |              |              |
| CMS-222 150-200 5500-6500 5                                                  |                     |                       |                           | secondary | 0.976       | \$36.00      | \$216.00     |
| 0.5 equivalents h                                                            | ydroxyl/kg (ca. 3 ł | ypropyl groups/chain) | 20% non-s                 | loxane    | CAS: [68957 | 7-00-6] TSCA |              |

$$\equiv Si(CH_2)_3O - C - C = CH_2$$

## Methacrylate and Acrylate Functional Siloxanes

Methacrylate and Acrylate functional siloxanes undergo the same reactions generally associated with methacrylates and acrylates, the most conspicuous being radical induced polymerization. Unlike vinylsiloxanes which are sluggish compared to their organic counterparts, methacrylate and acrylate siloxanes have similar reactivity to their organic counterparts. The principal applications of methacrylate functional siloxanes are as modifiers to organic systems. Upon radical induced polymerization, methacryloxypropyl terminated siloxanes by themselves only increase in viscosity. Copolymers with greater than 5 mole % methacrylate substitution crosslink to give non-flowable resins. Acrylate functional siloxanes cure at greater than ten times as fast as methacrylate functional siloxanes on exposure to UV in the presence of a photoinitiator such as ethylbenzoin. Oxygen is an inhibitor for methacrylate polymerization in general. The high oxygen permeability of siloxanes usually makes it necessary to blanket these materials with nitrogen or argon in order to obtain reasonable cures.

|         |           | Molecular | Specific |           |            |
|---------|-----------|-----------|----------|-----------|------------|
| Code    | Viscosity | Weight    | Gravity  | Price/25g | Price/100g |
| DMS-R01 | 1 - 2     | 386       | 0.97     | \$54.00   | \$176.00   |
| DMS-R05 | 4 - 6     | 550-700   | 0.98     | \$68.00   | \$220.00   |
| DMS-R18 | 70-100    | 4500-5500 | 0.98     | \$68.00   | \$220.00   |
| DMS-R22 | 200-300   | 10,000    | 0.98     | \$68.00   | \$220.00   |
| DMS-R31 | 1000      | 25,000    | 0.98     | \$56.00   | \$180.00   |

Methacryloxypropyl Terminated PolyDimethylsiloxanes

| Acryloxy Termi | inated PolyDim | ethylsiloxanes      |                     | CAS       | : [128754-61-0] |
|----------------|----------------|---------------------|---------------------|-----------|-----------------|
| Code           | Viscosity      | Molecular<br>Weight | Specific<br>Gravity | Price/25g | Price/100g      |
| DMS-U22        | 180-250        | 1000-1200           | 1.00                | \$56.00   | \$180.00        |

| (112011101) 1011) | P-0P)-))    |          | CAS: [104             | 780-61-2] TSCA |
|-------------------|-------------|----------|-----------------------|----------------|
|                   |             | Specific | Mole % (Methacryloxy- | ,              |
| Code              | Viscosity   | Gravity  | propyl)Methylsiloxane | Price/100g     |
| RMS-044           | 8000-10,000 | 0.98     | 4 - 6                 | \$86.00        |
| RMS-033           | 1000-2000   | 0.98     | 2-4                   | \$120.00       |
| RMS-083           | 2000-3000   | 0.99     | 7 - 9                 | \$110.00       |

## (Methacryloxypropyl)methylsiloxane - Dimethylsiloxane Copolymers

## (Acryloxypropyl)methylsiloxane - Dimethylsiloxane Copolymers

|              |                     | Specific       | Mole % (Acryloxy-                  |            |
|--------------|---------------------|----------------|------------------------------------|------------|
| Code         | Viscosity           | Gravity        | propyl)Methylsiloxane              | Price/100g |
| UMS-182      | 80-120              | 1.01           | 15-20                              | \$140.00   |
| UMS-992*     | 50-125              | 1.10           | 99-100                             | \$110.00   |
| *homopolymer | Refractive Index: U | MS-182 = 1.420 | ; CAS: 158061-40-6; UMS-992 = 1.46 | 4          |

## Methacryloxypropyl T-structure Siloxanes

CAS: [67923-18-6] TSCA

| Code     | Viscosity | Molecular<br>Weight | Specific<br>Gravity | Price/100g |
|----------|-----------|---------------------|---------------------|------------|
| RTT-1011 | 10 - 20   | 570-620             | 0.95                | \$86.00    |

## See also methacrylate functional macromers.

# Selected Polymers with Non-Hydrolyzeable Functionality

## ≡Si-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SH

## Mercapto-functional Silicones

Mercapto-functional siloxanes strongly adsorb onto fibers and metal surfaces. High performance toner fluids for reprographic applications are formulated from mercapto-fluids. As components in automotive polishes they are effective rust inhibitors. They act as internal mold release agents for rubber and semi-permanent lubricants for automotive weather stripping. Mercapto-fluids are valuable additives in cosmetic and hair care products. They also undergo radical initiated (including UV) addition to unsaturated resins. Homopolymers are used as crosslinkers for vinylsiloxanes in rapid UV cure fiber optic coatings<sup>1</sup>.

| Mercaptopropyl)Methylsiloxane - Dimethylsiloxane Copolymers |                                 |                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                       | 03-9] TSCA                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Molecular Mole % (Mercapto- Specific Refractive             |                                 |                                                                                                                      |                                                                                                                                                                  | Refractive                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                       |
| Viscosity                                                   | Weight                          | propyl)MethylSiloxane                                                                                                | Gravity                                                                                                                                                          | Index                                                                                                                                                                                                                  | Price/100g                                                                                                                                                                                                                                                            | Price/1kg                                                                                                                                                                                                                                                                                             |
| 120-180                                                     | 6000-8000                       | 2 - 3                                                                                                                | 0.97                                                                                                                                                             | 1.406                                                                                                                                                                                                                  | \$21.00                                                                                                                                                                                                                                                               | \$112.00                                                                                                                                                                                                                                                                                              |
| 120-170                                                     | 7200-8000                       | 4 - 6                                                                                                                | 0.98                                                                                                                                                             | 1.408                                                                                                                                                                                                                  | \$21.00                                                                                                                                                                                                                                                               | \$112.00                                                                                                                                                                                                                                                                                              |
| 75-150                                                      | 4000-7000                       | 99-100                                                                                                               | 0.97                                                                                                                                                             | 1.496                                                                                                                                                                                                                  | \$92.00                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                       |
|                                                             | Viscosity<br>120-180<br>120-170 | Molecular           Viscosity         Weight           120-180         6000-8000           120-170         7200-8000 | Molecular         Mole % (Mercapto-<br>propyl)MethylSiloxane           120-180         6000-8000         2 - 3           120-170         7200-8000         4 - 6 | Molecular         Mole % (Mercapto-<br>propyl)MethylSiloxane         Specific<br>Gravity           120-180         6000-8000         2 - 3         0.97           120-170         7200-8000         4 - 6         0.98 | Molecular         Mole % (Mercapto-<br>propyl)MethylSiloxane         Specific<br>Gravity         Refractive           120-180         6000-8000         2 - 3         0.97         1.406           120-170         7200-8000         4 - 6         0.98         1.408 | Molecular         Mole % (Mercapto-<br>propyl)MethylSiloxane         Specific<br>Gravity         Refractive           120-180         6000-8000         2 - 3         0.97         1.406         \$21.00           120-170         7200-8000         4 - 6         0.98         1.408         \$21.00 |

\* homopolymer, contains cyclics

# ≡Si-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Cl

## Chloropropyl-functional Silicones

Chlororopropyl-functional silicones are moderately stable fluids which are reactive with polysulfides and durable press fabrics. They behave as internal lubricants and plasticizers for a variety of resins where low volatility and flammability resistance is a factor.

| Chloropro                                     | pylMethylsil | oxane - Dimeth | nylsiloxane Copolymers | 1       |       | CAS: [70900-2 | 20-8] TSCA |
|-----------------------------------------------|--------------|----------------|------------------------|---------|-------|---------------|------------|
| Molecular Mole % (Chloro- Specific Refractive |              |                |                        |         |       |               |            |
| Code                                          | Viscosity    | Weight         | propyl)MethylSiloxane  | Gravity | Index | Price/100g    |            |
| LMS-152                                       | 300-450      | 7500-10,000    | 14 - 16                | 1.01    | 1.420 | \$96.00       |            |



## Carboxylate and Anhydride functional Silicones

Carboxylic acid functional siloxanes are excellent rheology and wetting modifiers for polyesters. When reacted with inorganic bases or amines, they perform as anti-static surfactants and lubricants. Anhydride functional siloxanes can be reacted directly with amines and epoxides or hydrolyzed to give dicarboxylic acid terminated siloxanes.

|           |           | Molecular |               | Specific | Refractive |            |  |
|-----------|-----------|-----------|---------------|----------|------------|------------|--|
| Code      | Viscosity | Weight    | Termination   | Gravity  | Index      | Price/100g |  |
| DMS-B12*  | 15-30     | 1000      | Carboxydecyl  | 0.96     | 1.421      | \$180.00   |  |
| DMS-B25*  | 450-550   | 10,000    | Carboxydecyl  | 0.97     | 1.403      | \$160.00   |  |
| DMS-B31** | 800-1200  | 28,000    | Carboxypropyl | 0.98     |            | \$160.00   |  |

\*CAS: [58130-04-4] \*\* CAS: [158465-59-9]

#### Succinic Anhydride Terminated PolyDimethylsiloxane

| Molecular |           |         | Specific | Specific Refractive |           |  |
|-----------|-----------|---------|----------|---------------------|-----------|--|
| Code      | Viscosity | Weight  | Gravity  | Index               | Price/25g |  |
| DMS-Z11   | 75-100    | 600-800 | 1.06     | 1.436               | \$90.00   |  |

## Polydimethylsiloxanes with Hydrolyzeable Functionality

Polydimethylsiloxanes with hydrolyzeable functionality react with water to produce silanol terminated fluids of equivalent or higher degrees of polymerization. Polymers with this category of reactivity are almost never directly hydrolyzed. Chlorine and dimethylamine terminated fluids are usually employed in ordered chain extension and block polymer synthesis, particularly urethanes and polycarbonates. Acetoxy and dimethylamine terminated fluids can also be used as unfilled bases for rapid cure RTV's.

## Polymers with Hydrolyzeable Functionality

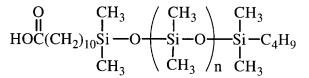
| Chlorine Termi | nated PolyDime | CAS: [        | 67923-13-1] TSCA |            |
|----------------|----------------|---------------|------------------|------------|
|                |                | Molecular     | Specific         |            |
| Code           | Viscosity      | Weight        | Gravity          | Price/100g |
| DMS-K05        | 3 - 6          | 425-600       | 1.00             | \$64.00    |
| DMS-K13        | 20-50          | 2000-4000     | 0.99             | \$120.00   |
| DMS-K26        | 500-800        | 15,000-20,000 | 0.99             | \$94.00    |

Diacetoxymethyl Terminated PolyDimethylsiloxanes CAS: [70900-20-81] TSCA

|         |           | Molecular | Specific |            |
|---------|-----------|-----------|----------|------------|
| Code    | Viscosity | Weight    | Gravity  | Price/100g |
| DMS-D33 | 2500-3500 | 36,000    | 0.99     | \$64.00    |

| Dimethylamino Terminated PolyDimethylsiloxanes |           |           | CAS:     | [67762-92-9] TSCA |
|------------------------------------------------|-----------|-----------|----------|-------------------|
|                                                |           | Molecular | Specific |                   |
| Code                                           | Viscosity | Weight    | Gravity  | Price/100g        |
| DMS-N05                                        | 3 - 6     | 450-600   | 0.93     | \$160.00          |

| Methoxy Term | inated PolyDime | CAS: [6   | 8951-97-3] TSCA |            |
|--------------|-----------------|-----------|-----------------|------------|
|              |                 | Molecular | Specific        |            |
| Code         | Viscosity       | Weight    | Gravity         | Price/100g |
| DMS-X11      | 5-12            | 900-1000  | 0.94            | \$39.00    |
| DMS-X25      | 400-600         | 17,000    | 0.98            | \$60.00    |


## MethoxyMethylsiloxane-Dimethylsiloxane copolymer

| methoxy terminated with branch structure |           |         | CAS:     | [68440-84-6] TSCA |
|------------------------------------------|-----------|---------|----------|-------------------|
|                                          |           | Mole %  | Specific |                   |
| Code                                     | Viscosity | Methoxy | Gravity  | Price/100g        |
| XMS-5025                                 | 200-700   | 15-25   | 1.18     | \$46.00           |

## Macromers and Monofunctional Terminated Fluids

Macromers are monofunctional compounds with molecular weights high enough to be considered polymers. Copolymerization of macromers with traditional monomers offers a route to polymers with properties that are usually associated with grafting. Modification of organic polymers with silicon-containing macromers has led to new applications in coatings, synthetic leather, pigment vehicles and cosmetics. Low bleed gels can be formulated from monovinyl terminated siloxanes in addition cure systems.

CODE Viscosity MW Refractive Index Gravity Price



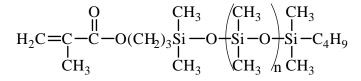
MonoCarboxydecyl Terminated Polydimethylsiloxane

| MCR-B11 | 10    | 1000 |  | 100g/\$180.00 |
|---------|-------|------|--|---------------|
| MCR-B16 | 50-70 | 5000 |  | 100g/\$180.00 |

$$HORCH_2 - Si - O - Si - O - Si - O - Si - O - Si - C_4H_9$$
$$CH_3 - CH_3 - CH_3$$

MonoCarbinol Terminated PolyDimethylsiloxane

| MCR-C12 | 15-20 | 1000    | 1.409                                             | 0.96 | 100g/\$120.00 |
|---------|-------|---------|---------------------------------------------------|------|---------------|
| MCR-C13 | 35-40 | 550-650 | (contains ~50% CH <sub>2</sub> CH <sub>2</sub> O) | 1.02 | 100g/\$60.00  |
| MCR-C18 | 80-90 | 5000    | 1.405                                             | 0.97 | 100g/\$140.00 |
| MCR-C22 | 250   | 10,000  | 1.404                                             | 0.98 | 100g/\$120.00 |


MCR-C12, MCR-C18, MCR-C22: hydroxyethoxypropyl terminated, CAS: [207308-30-3] TSCA MCR-C13:hydroxy(polyethylenoxy)propyl terminated, CAS: [67674-67-3] TSCA

| HOCH <sub>2</sub>                | CH <sub>3</sub> | $/ CH_3 \setminus$                                                     | CH3                    |
|----------------------------------|-----------------|------------------------------------------------------------------------|------------------------|
| CH <sub>3</sub> CCH <sub>2</sub> | -Si -O          | -Si -O-                                                                | -Si -C <sub>4</sub> H₀ |
|                                  |                 | $\left\langle \begin{array}{c} I\\ CH_3 \end{array} \right\rangle_{I}$ |                        |

| MonoDiCarbinol Terminated PolyDimethylsiloxane |         |      |       |      |               |  |  |
|------------------------------------------------|---------|------|-------|------|---------------|--|--|
| MCR-C62                                        | 100-125 | 5000 | 1.409 | 0.97 | 100g/\$120.00 |  |  |

Mono-(2,3-Epoxy)Propylether Terminated PolyDimethylsiloxane

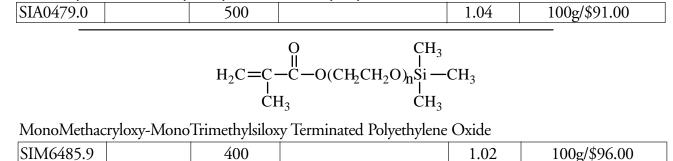
|         |       |      |       |      | CAS: [127947-26-6] |
|---------|-------|------|-------|------|--------------------|
| MCR-E11 | 10-15 | 1000 | 1.410 | 0.96 | 100g/\$186.00      |
| MCR-E21 | 120   | 5000 | 1.408 | 0.97 | 100g/\$186.00      |



MonoMethacryloxypropyl Terminated PolyDimethylsiloxane

|         |       |          | · ·   | C    | AS: [146632-07-7] TSCA |
|---------|-------|----------|-------|------|------------------------|
| MCR-M11 | 10    | 800-1000 | 1.405 | 0.96 | 100g/\$110.00          |
| MCR-M17 | 70-80 | 5000     | 1.406 | 0.97 | 100g/\$180.00          |

MonoVinyl Terminated PolyDimethylsiloxane


|           |          | CAS: [68952-00-1] |       |      |               |
|-----------|----------|-------------------|-------|------|---------------|
| MCR-V31*  | 800-1200 | 25,000-30,000     |       | 0.97 | 100g/\$56.00  |
| MCR-V41** | 10,000   | 62,700            | 1.404 | 0.98 | 100g/\$164.00 |

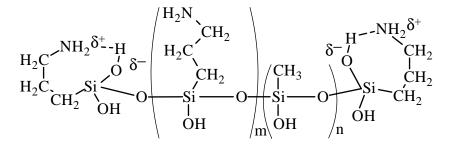
\*MCRV31 is approximately 50% monovinyl terminated, with balance mixed divinyl and dimethyl terminated.

\*\* MCRV41 is essentially 100% monovinyl terminated; non functional end is n-butyl terminated.

$$H_2C = CHCH_2 - O(CH_2CH_2O)_n \overset{CH_3}{\underset{l}{\overset{l}{\text{Si}}}} - CH_3$$

MonoAllyl-MonoTrimethylsiloxy Terminated Polyethylene Oxide

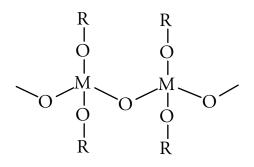



32

## **Reactive Silicone Emulsions**

Emulsions of reactive silicones are playing an increasing role in formulation technology for water-borne systems. Primary applications for silicone emulsions are in textile finishes, release coatings and automotive polishes. Silanol fluids are stable under neutral conditions and have nonionic emulsifiers. Aminoalkylalkoxysiloxanes are offered with cationic emulsifiers.

| Reactive Silicone Emulsions |                     |               |          |          |             |           |  |  |
|-----------------------------|---------------------|---------------|----------|----------|-------------|-----------|--|--|
| emulsifier content: 3       | -6%                 |               |          |          |             | TSCA      |  |  |
|                             |                     | base fluid    |          | emulsion |             |           |  |  |
| Code                        | silicone class      | viscosity     | % solids | type     | Price/100 g | Price/3kg |  |  |
|                             |                     |               |          |          |             |           |  |  |
| DMS-S33M50                  | silanol             | 3500          | 50       | nonionic | \$10.00     | \$96.00   |  |  |
|                             |                     |               |          |          |             |           |  |  |
| ATM-1322M50*                | diamino/alkoxy      |               | 50       | cationic | \$10.00     | \$96.00   |  |  |
| *0.45mEq/g comb             | ined primary and se | condary amine |          | •        |             |           |  |  |


## Water-borne Silsesquioxane Oligomers



Water-borne silsesquioxane oligomers act as primers for metals, additives for acrylic latex sealants and as coupling agents for siliceous surfaces<sup>1</sup>. The offer both organic group and silanol functionality. These amphoteric materials are stable in water solutions and, unlike conventional coupling agents, have very low VOC's.

| Water-borne Silsesquioxane Oligomers TSC |                       |        |           |             |          |           |         | TSCA       |        |
|------------------------------------------|-----------------------|--------|-----------|-------------|----------|-----------|---------|------------|--------|
|                                          | Functional            |        | Molecular | Weight %    | Specific |           |         |            |        |
| Code                                     | Group                 | Mole % | Weight    | in solution | Gravity  | Viscosity | pН      | Price/100g | 3kg    |
| WSA-7011                                 | Aminopropyl           | 65-75  | 250-500   | 25-28       | 1.10     | 5-15      | 10-10.5 | \$29.00    | 435.00 |
| WSA-9911*                                | Aminopropyl           | 100    | 270-550   | 22-25       | 1.06     | 5-15      | 10-10.5 | \$24.00    | 360.00 |
| WSA-7021                                 | Aminoethylaminopropyl | 65-75  | 370-650   | 25-28       | 1.10     | 5-10      | 10-11   | \$29.00    | 435.00 |
| *CAS [29159                              | -37-3]                |        |           |             |          |           |         |            |        |

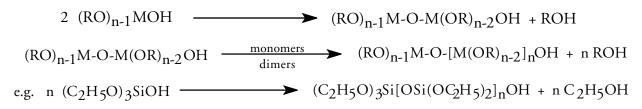
<sup>1</sup>B. Arkles et al, in "Silanes & Other Coupling Agents," ed. K. L. Mittal, p91. VSP, Utrecht, 1992.

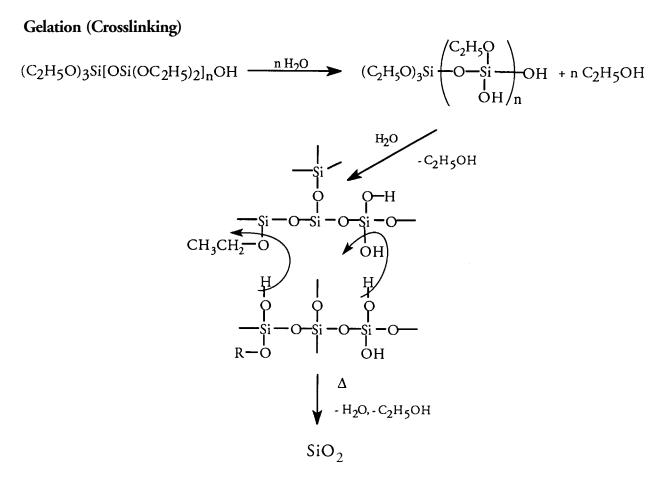


Polymeric Metal Alkoxides

Polymeric metal alkoxides fall into two main classes: oxo-bridged, which can be regarded as partially hydrolyzed metal alkoxides, and alkoxide bridged which can be regarded as organo diester alkoxides. Both classes have the advantages of high metal content and low volatility.

Polymeric metal alkoxides are used primarily as curing agents for 2-part RTV's and in the preparation of binders and coatings including investment casting resins and zinc-rich paints. The latter appplications can be considered as special examples of Sol-Gel technology. *Sol-Gel* is a method for preparing specialty metal oxide glasses and ceramics by hydrolyzing a chemical precursor or mixture of chemical precursors that pass sequentially through a solution state and a gel state before being dehydrated to a glass or ceramic.


### Sol-Gel Process Technology and Chemistry


Preparation of metal oxides by the sol-gel route proceeds through three basic steps: 1) partial hydrolysis of metal alkoxides to form reactive monomers; 2) the polycondensation of these monomers to form colloid-like oligomers (sol formation); 3) additional hydrolysis to promote polymerization and cross-linking leading to a 3-dimensional matrix (gel formation). Although presented sequentially, these reactions occur simultaneously after the initial processing stage.

Monomer Formation (Partial Hydrolysis)

 $M(OR)_{n} + H_{2}O \longrightarrow (RO)_{n-1}MOH + ROH$ e.g. Si(OC<sub>2</sub>H<sub>5</sub>)<sub>4</sub> + H<sub>2</sub>O  $\xrightarrow{solvent}$  (C<sub>2</sub>H<sub>5</sub>O)<sub>3</sub>SiOH + C<sub>2</sub>H<sub>5</sub>OH

Sol Formation (Polycondensation)





As polymerization and cross-linking progress, the viscosity of the sol gradually increases until the sol-gel transition point is reached. At this point the viscosity abruptly increases and gelation occurs. Further increases in cross-linking are promoted by drying and other dehydration methods. Maximum density is achieved in a process called densification in which the isolated gel is heated above its glass transition temperature. The densification rate and transition (sintering) temperature are influenced primarily by the morphology and composition of the gel.

#### REFERENCES

SOL-GEL TECHNOLOGY

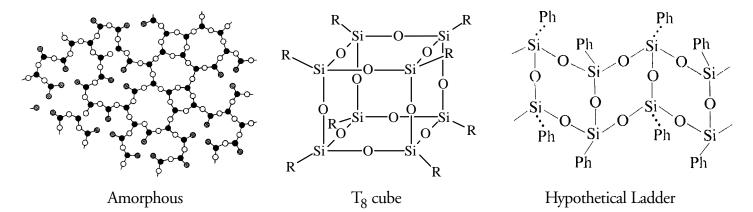
C. J. Brinker, G. W. Scherer, Sol-Gel Science, Academic Press, 1990.

C. J. Brinker, D. E. Clark, D. R. Ulrich, Better Ceramics Through Chemistry (Materials Research Society Proceedings 32) Elsevier, 1984

C. J. Brinker, D. E. Clark, D. R. Ulrich, Better Ceramics Through Chemistry II, III, IV (IV add'l ed. B. J. Zelinski) (Materials Research Society Proceedings 73, 121, 180) Mat'l. Res. Soc., 1984, 1988, 1990.

L. L. Hench, D. R. Ulrich, Ultrastructure Processing of Ceramics, Glasses and Composites, Wiley, 1984.

L. L. Hench, D. R. Ulrich, Science of Ceramic Processing, Wiley, 1986


L. C. Klein. Sol-Gel Technology for Thin Films, Fibers, Preforms, and Electronics, Noyes, 1988

# Polymeric Metal Alkoxides

| name                                                                                                                                                                                            | metal content                                                                                            | unit M.W.                                                      | viscosity, cSt        | density   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------|-----------|
| PSI-021<br>Poly(DIETHOXYSILOXANE)<br>[(C <sub>2</sub> H <sub>5</sub> O) <sub>2</sub> SiO]<br>crosslinker for two-component conc<br>[68412-37-3] TSCA                                            | 20.5-21.5% Si<br>(40-42% SiO <sub>2</sub> equivaler<br>lensation cure (silanol) RT                       |                                                                | 4-5<br>500g/\$28.00   | 1.05-1.07 |
| PSI-023<br>Poly(DIETHOXYSILOXANE)<br>[(C <sub>2</sub> H <sub>5</sub> O) <sub>2</sub> SiO]<br>base for zinc-rich paints                                                                          | 23.0-23.5% Si<br>(48-52% SiO <sub>2</sub> equivalen                                                      |                                                                | 4-5                   | 1.05-1.07 |
| [68412-37-3] TSCA                                                                                                                                                                               |                                                                                                          | 100g/\$12.00                                                   | 500g/\$48.00          |           |
| PSI-026<br>Poly(DIMETHOXYSILOXANE)<br>[(CH <sub>3</sub> O) <sub>2</sub> SiO]                                                                                                                    | 26.0-27.0% Si                                                                                            | 106.15                                                         | 6-9                   | 1.14-1.16 |
| highest SiO <sub>2</sub> content precursor for s<br>[25498-02-6] TSCA                                                                                                                           | ol-gel                                                                                                   | 100g/\$32.00                                                   | 500g/\$128.00         |           |
| PSIAL-007<br>DIETHOXYSILOXANE -s-BUTYLALU<br>sol-gel intermediate for aluminum s                                                                                                                | ilicates <sup>1</sup> .                                                                                  | 7.5-8.5%Al<br>6.6-7.6% Si                                      |                       | 0.90-1.00 |
| 1. J. Boilot in "Better Ceramics Thr<br>[68959-06-8] TSCA                                                                                                                                       | ough Chemistry III, p121                                                                                 | 100g/\$38.00                                                   | 500g/\$152.00         |           |
| PSITI-019<br>DIETHOXYSILOXANE - ETHYLTITAI<br>[(C <sub>2</sub> H <sub>5</sub> O) <sub>2</sub> SiO][(C <sub>2</sub> H <sub>5</sub> O) <sub>2</sub> TiO]<br>employed in formation of titania-sili |                                                                                                          | 19.1-19.6% Si<br>2.1-2.3% Ti                                   | 10-25                 |           |
| 1. J. Miller et al, J. Mater. Chem., 5                                                                                                                                                          | , 1759, 1995                                                                                             | 25g/\$40.00                                                    | 100g/\$130.00         |           |
| PSIP0-019<br>DIETHOXYSILOXANE - ETHYLPHOS<br>[(C <sub>2</sub> H <sub>5</sub> O) <sub>2</sub> SiO][(C <sub>2</sub> H <sub>5</sub> O)OPO]<br>[51960-53-3]                                         | SPHATE copolymer<br>hygroscopic                                                                          | 19.1-19.6% Si<br>1.4-1.5% P<br>25g/\$40.00                     | 100g/\$130.00         |           |
| PAN-040<br>Poly(ANTIMONY ETHYLENE<br>GLYCOXIDE)<br>[C <sub>6</sub> H <sub>12</sub> O <sub>6</sub> Sb <sub>2</sub> ] TSCA                                                                        | 39.8-40.4% Sb<br>catalyst for transesterifica                                                            | 303.55<br>ation<br>25g/\$12.00                                 | solid<br>100g/\$39.00 |           |
|                                                                                                                                                                                                 |                                                                                                          | 2)8/\$12.00                                                    | 100g/ψ37.00           |           |
| PTI-023<br>Poly(DIBUTYLTITANATE)<br>[(C4H9O)2TiO]                                                                                                                                               | 22.0-23.0% Ti<br>stabilized with ~5% ethy                                                                | 210.10<br>dene glycol                                          | 3200-3500             | 1.07-1.10 |
| [9022-96-2] TSCA                                                                                                                                                                                | stabilized with ~ ) /0 ellly                                                                             | 100g/\$24.00                                                   | 500g/\$76.00          |           |
| PTI-008<br>Poly(OCTYLENEGLYCOL-<br>TITANATE)<br>[OCH <sub>2</sub> CHEt(CH <sub>2</sub> ) <sub>4</sub> OTi(CH <sub>2</sub> CHEt(CH<br>[5575-43-9]                                                | 7.5-7.6% Ti<br>contains ~5% free 2-ethy<br>[ <sub>2</sub> ) <sub>4</sub> OH) <sub>2</sub> ] <sub>n</sub> | 482.54<br>yl-1,3-hexanediol<br>flashpoint: 50°C<br>25g/\$20.00 |                       | 1.035     |

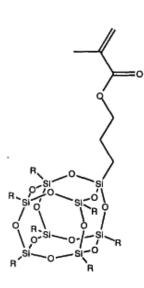
#### PolySilsesquioxanes and T-Resins RSiO<sub>1.5</sub>

PolySilsesquioxanes and T-resins are highly crosslinked materials with the empirical formula RSiO<sub>1.5</sub>. They are named from the organic group and a one and a half (sesqui) stoichiometry of oxygen bound to silicon. T-resin, an alternate designation, indicates that there are three (Tri-substituted) oxygens substituting the silicon. Both designations simplify the complex structures that have now come to be associated with these polymers. A variety of paradigms have been associated with the structure of these resins ranging from amorphous to cubes containing eight silicon atoms, sometimes designated as  $T_8$  structures. Ladder structures have been attributed to these resins, but the current understanding is that in most cases these are hypothetical rather than actual structures.



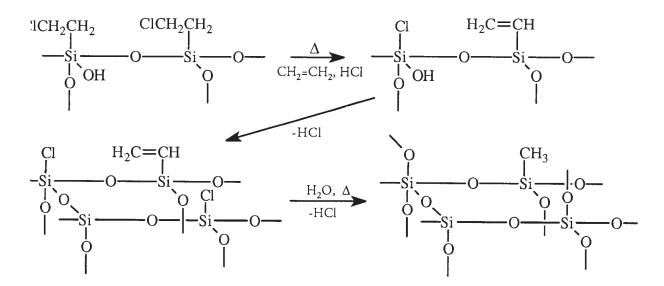
Polysilsesquioxanes are used as matrix resins for molding compounds, catalyst supports and coating resins. As dielectric, planarization and reactive ion etch resistant layers, they find application in microelectronics. As abrasion resistant coatings they protect plastic glazing and optics. As preceramic coatings they convert to silicon dioxide, silicon oxycarbide, and silicon carbide depending on the oxidizing conditions for the high temperature thermal conversion.

Polysilsesquioxane resins containing silanols (hydroxyls) can be cured at elevated temperatures. Formulation and catalysis is generally performed at room-temperature or below. At temperatures above 40°C most resins soften and become tacky, becoming viscous liquids by 120°C. The condensation of silanols leads to cure and the resins become tough binders or films. The cure is usually accelerated by the addition of 0.1-0.5% of a catalyst such as dibutyltindiacetate, zinc acetate or zinc 2-ethylhexanoate. The resins can also be dispersed in solvents such as methylethylketone for coating applications.


#### polySilsesquioxanes and T-resins

|          |                              | M.W.                |              | Refractive      | Specific      |            |           |
|----------|------------------------------|---------------------|--------------|-----------------|---------------|------------|-----------|
| Code     | Name                         | (approximate)       | % (OH)       | Index           | Gravity       | Price/100g | Price/1kg |
| SST-3M01 | poly(Methylsilsesquioxane)   |                     |              |                 |               |            |           |
|          | 100% Methyl                  | 7000-8000           | 4.0-6.0      | 1.42            |               |            |           |
|          | [68554-70-1] TSCA            |                     |              |                 |               | \$50.00    | \$350.00  |
| SST-3M02 | poly(Methylsilsesquioxane)   |                     |              |                 |               |            |           |
|          | 100% Methyl                  |                     | 2.5-4.0      |                 | 1.08          |            |           |
|          | [68554-70-1] TSCA            |                     |              |                 |               | \$22.00    | \$132.00  |
| SST-3MH1 | poly(Methyl-Hydridosilsesq   | uioxane)            |              |                 |               |            |           |
|          | 90% Methyl, 10% Hydrid       | le                  |              |                 |               | \$140.00   |           |
| SST-3P01 | poly(Phenylsilsesquioxane)   |                     |              |                 |               |            |           |
|          | 100% Phenyl                  | 1200-1600           | 4.5-6.5      | 1.56            |               |            |           |
|          | [70131-69-0] TSCA            |                     |              |                 |               | \$72.00    |           |
| SST-3PM1 | poly(Phenyl-Methylsilsesqui  | oxane)              |              |                 |               |            |           |
|          | 90% Phenyl, 10% Methyl       |                     |              | 1.55            |               |            |           |
|          | [181186-29-8]                |                     |              |                 |               | \$60.00    | \$420.00  |
| SST-3PM2 | (Phenylsilsesquioxane)-(Din  | nethylsiloxane) cop | polymer      |                 |               |            |           |
|          | 70% Phenyl, 30% DiMet        | nyl                 | 3.0-5.0      |                 | 1.08          |            |           |
|          | [73138-88-2] TSCA            |                     |              |                 |               | \$22.00    | \$132.00  |
| SST-3PM4 | (Phenyl-Methylsilsesquioxar  | e)-(Phenylmethyl    | siloxane) (D | piphenylsiloxar | ne) tetrapoly | mer        |           |
|          | 85% Silsesquioxane, 15%      | Siloxane            | 2.0-3.0      |                 | 1.08          |            |           |
|          | [181186-36-7] TSCA           | 1400-1600           |              |                 |               | \$60.00    | \$420.00  |
| SST-3PP1 | poly(Phenyl-Propylsilsesquid |                     |              |                 |               |            |           |
|          | 70% Phenyl, 30% Propyl       |                     | 3.5-5.5      | 1.54            |               |            |           |
|          | [68037-90-1] TSCA            |                     | ;ht: 400)    |                 |               | \$19.00    | \$114.00  |
| SST-3PV1 | poly(Phenyl-Vinylsilsesquio  | kane)               |              |                 |               |            |           |
|          | 90% Phenyl, 10% Vinyl        | 1000-1300           |              |                 |               | \$86.00    |           |
|          |                              |                     |              |                 |               |            |           |

SST-1


## Specialty polysilsesquioxanes

Specialty polysilsesquioxanes can be utilized as models and precursors for silica surfaces

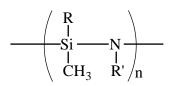


and zeolites. If a silicon is removed from a T<sub>8</sub> cube, the open position of the remaining T<sub>7</sub> cube can be substituted with catalytically active metals<sup>1</sup>. T<sub>7</sub> cubes can be converted to functionalized T<sub>8</sub> cubes. Functionalized T<sub>8</sub> cubes are sometimes designated POSS (polyhedral oligomeric silsesquioxane) monomers. Methacrylate T<sub>8</sub> cubes can be copolymerized with a variety of monomers to form homopolymers and copolymers. The polymers may be viewed structurally as nanocomposites or hybid inorganic-organic polymers. The cube structures impart excellent mechanical properties and high oxygen permeability.<sup>2</sup> Hydride substituted T<sub>8</sub> cubes can be introduced into vinyl-addition silicone rubbers.<sup>3</sup> T<sub>8</sub> cubes in which all silicon atoms are substituted with hydrogen have demonstrated utility as flowable oxide precursors in microelectronics.

Silsesquioxanes containing  $\beta$ -chloroethyl groups can be converted to silicon dioxide via elimination and hydrolysis at low temperatures or under UV exposure.<sup>4</sup> The thermal reaction cascade for  $\beta$ -substituted silsesquioxanes leading to SiO<sub>2</sub>-rich structures with a low level of carbon occurs at temperatures above 180°.



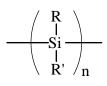
UV exposure results in pure SiO<sub>2</sub> films and suggests that patterning  $\beta$ -substituted silsesquioxane films can lead to direct fabrication of dielectric architectures.


- <sup>1</sup> F. Feher et al, J. Am. Chem. Soc., 111, 1741, 1989.
- <sup>2</sup> J. Lichtenhan et al, Macromolecules, 28, 8435, 1995
- <sup>3</sup> J. Lichtenhan, Comments Inorg. Chem., 17, 115, 1995
- <sup>4</sup> B. Arkles, D. Berry, L. Figge, J. Sol-Gel Sci. & Technol., 8, 465, 1997

#### Specialty polySilsesquioxanes

|             |                                | M.W.               |                |                          |             |           |
|-------------|--------------------------------|--------------------|----------------|--------------------------|-------------|-----------|
| Code        | Name                           | (approximate)      | ) % (OH)       | Solubility               | Price/1 g   | Price/10g |
| SST-S7C61   | poly(Cyclohexylsilsesquioxane  | ), Silanol functi  | onal           |                          |             |           |
|             | >90% T7 cube                   | 973.69             | 5.1-5.4        | THF, pyridine            |             |           |
|             | [4115-83-7]                    |                    |                |                          | \$54.00     |           |
| SST-S7C51   | poly(Cyclopentylsilsesquioxan  | e), Silanol funct  | tional         |                          |             |           |
|             | [135225-24-0] >95% T7 cub      | e 875.50           | 5.7-5.9        | THF, pyridine            | \$32.00     | \$220.00  |
| SST-E8C51   | poly(Cyclopentylsilsesquioxan  | e), Epoxypropy     | l substituted  |                          |             |           |
|             | T8 cube with polymerizeable    | functionality      |                |                          |             |           |
|             |                                | 957.64             |                | THF, hexane              | \$52.00     | \$360.00  |
| SST-H8C51   | poly(Cyclopentylsilsesquioxan  | e), Hydride sub    | stituted       |                          |             |           |
|             | T8 cube active in hydrosilylat | tion reactions     |                | THF, hexane              |             |           |
|             |                                | 901.27             |                |                          | \$39.00     | \$274.00  |
| SST-R8C51   | poly(Cyclopentylsilsesquioxan  | e), Methacrylox    | ypropyl subs   | tituted                  |             |           |
|             | T8 cube with polymerizeable    | functionality      |                |                          |             |           |
|             | [169391-91-7]                  | 1027.73            |                | THF, hexane              | \$39.00     | \$274.00  |
| SST-H8H01   | poly(Hydridosilsesquioxane) -  | T8 with all sili   | icons hydride  | substituted              |             |           |
|             | [137125-44-1]                  | 424.75             | 17-20% in m    | ethylisobutylketone; der | nsity: 0.88 | \$120.00  |
| SST-V8V01   | poly(Vinylsilsesquioxane) - T  | 8 with all silicor | ns vinyl subst | ituted                   |             |           |
|             | 69655-76-1                     | 633.04             |                |                          | \$36.00     | \$256.00  |
| Thermally & | UV labile polysilsesquioxane   | S                  |                |                          |             |           |
| SST-BCE1    | poly(2-Chloroethylsilsesquiox  | ane) CAS: 18       | 8969-12-2      |                          |             |           |
|             | converts to SiO2 >300C         | 800-1400           | 3.0-5.5        | methoxypropanol          |             | \$45.00   |
| SST-BBE1    | poly(2-Bromoethylsilsesquioxa  | ane)               |                |                          |             |           |
|             | converts to SiO2 by UV         | 1200-2000          | 2.0-4.0        | methoxypropanol          |             | \$64.00   |
|             |                                |                    |                |                          |             |           |

SST-2

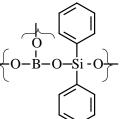

#### Polysilazanes and Polysilanes



#### polySILAZANES -(Si-N)-

Polysilazanes are preceramic polymers primarily utilized for the preparation of silicon nitride for thermal shock resistant refractories and dielectric coatings for microelectronics.

| PSN-2M01                         |                                 |             |
|----------------------------------|---------------------------------|-------------|
| poly(1,1-DIMETHYLSILAZANE)       | telomer                         |             |
| [89535-60-4] Tg: -82° >50 cSt. N | M.W.: 500-900 $D_4^{20}$ : 1.04 | 10g/\$94.00 |
| PSN-2M02                         | 1                               | 0           |
| poly(1,1-DIMETHYLSILAZANE)       | crosslinked                     |             |
| >1000 cSt.                       | % char, 700°: 15-20             | 10g/\$94.00 |
| PSN-2M11                         |                                 | 0 11        |
| poly(1,2-DIMETHYLSILAZANE)       |                                 |             |
| 500-800 cSt.                     | $D_{4}^{20}$ : 0.99             | 10g/\$96.00 |
| 900 000 <b>c</b> ou.             | $\boldsymbol{\Sigma}_4$ : 0.99  | 108,490.00  |




#### polySILANES -(Si-Si)-

Polysilanes have applications as preceramic polymers and photolabile coatings. Applications for polysilanes with methyl and phenyl group substitution are usually limited to silicon carbide precursors.

PSS-1M01 poly(DIMETHYLSILANE) [28883-63-8] TSCA Tm: 648° (substantial degradation before mp) 10g/\$32.00 PSS-1P01 (50% DIMETHYLSILANE)(50% PHENYLMETHYLSILANE) copolymer [70158-17-6] solid 10g/\$68.00 PSS-1P11 poly(PHENYLMETHYL)SILANE Tg: 112-122° 10g/\$94.00

#### **Specialty Silicon Containing Polymers**



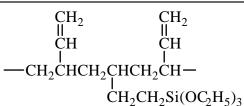
SSP-040 POLY(BORODIPHENYLSILOXANE) employed in preparation of ceramic fibers<sup>1</sup>. 1. S. Yajima et al, Nature, 266, 521, 1977

[70914-15-7] TSCA HMIS: 2-0-0-X

25g/\$72.00 100g/\$234.00

# 

solid, Tg: 95-100°, Tm: 140-1°


SSP-050

#### TRIMETHOXYSILYL MODIFIED POLYETHYLENE

0.5-1.2 mole % vinyltrimethoxysilane- ethylene copolymer melt process temp: 170-200° density: 0.927 moisture crosslinkable thermoplastic

[35312-82-4] TSCA HMIS: 1-1-0-X

100g/\$36.00 2kg/\$432.00



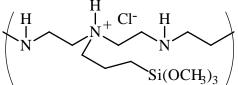
SSP-055

TRIETHOXYSILYL MODIFIED POLY-1,2-BUTADIENE, 50% in toluene viscosity: 100-200 cSt. M.W.: 3500-4500 density: 0.90 coupling agent for EPDM resins

[72905-90-9] TSCA HMIS: 2-4-0-X

100g/\$60.00 2kg/\$780.00

#### SSP-056


TRIETHOXYSILYL MODIFIED POLY-1,2-BUTADIENE, 50% in volatile silicone viscosity: 125-175 cSt. M.W.: 3500-4500 density: 0.93 primer coating for silicone rubbers

[72905-90-9] TSCA HMIS: 2-3-0-X

100g/\$68.00

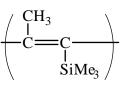
#### SSP-058

DIETHOXYMETHYLSILYL MODIFIED POLY-1,2-BUTADIENE, 50% in toluene viscosity: 75-150 cSt. M.W.: 3500-4500 density: 0.90 water-tree resistance additive for crosslinkable HDPE cable cladding 100g/\$86.00 HMIS: 2-4-0-X



# SSP-060 TRIMETHOXYSILYLPROPYL MODIFIED (POLYETHYLENIMINE) 50% in isopropanol visc: 125-75 cSt density: 0.92 employed as a coupling agent for polyamides'. 1. B. Arkles et al, SPI 42nd Composite Inst. Proc., 21-C, 1987

[75132-84-2] TSCA HMIS: 2-4-1-X


100g/\$42.00 2kg/\$546.00

#### SSP-065

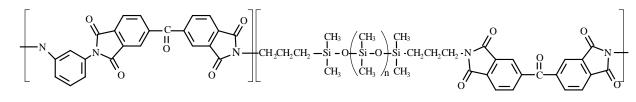
DIMETHOXYMETHYLSILYLPROPYL MODIFIED (POLYETHYLENIMINE) 50% in isopropanol

visc: 100-200 cSt density: 0.92 [1255441-88-5] TSCA HMIS: 2-4-1-X

100g/\$42.00 2kg/\$546.00



SSP-070


SIB1660.0

#### POLY(TRIMETHYLSILYL)PROPYNE

forms viscous 5% solutions in toluene/tetrahydrofuran high oxygen permeability<sup>1</sup>;  $PO_2/PN_2 = 1.7$ 1. T. Masuda et al, J. Am. Chem. Soc., *105*, 7473, 1983

[87842-32-8] HMIS: 1-1-0-X

10g/\$190.00



#### SSP-085 POLY(DIMETHYLSILOXANE)ETHERIMIDE

(35-45% polydimethylsiloxane)phenylenediaminepolyetherimide thermoplastic; tensile strength: 4000psi Tg: 168°C density: 1.18 [99904-16-2] TSCA HMIS: 1-1-0-X

100g/\$120.00

$$\begin{array}{ccc} CH_{3}O & CH_{3} & OCH_{3} \\ CH_{3}Si(CH_{2})_{3}O(CH_{2}CHO)_{n}(CH_{2})_{3}SiCH_{3} \\ CH_{3}O & OCH_{3} \end{array}$$

BIS[3-METHYLDIMETHOXYSILYL)PROPYL]POLYPROPYLENE OXIDE

visc: 15-20 cSt. M.W. 600-800 density: 1.00

base resin for tin catalyzed moisture-cure RTV's HMIS: 3-1-1-X

100g/\$39.00

#### Platinum Catalysts for Vinyl-Addition Silicone Cure

The recommended starting point for platinum catalysts is 20ppm platinum or 0.05-0.1 parts of platinum complex per 100 parts of vinyl-addition silicone formulation.

| SIP6829.0<br>PLATINUM CARBONYL CYCLOVINYLMETHYLS<br>3-3.5% platinum concentration in vinylmethylcyclics<br>catalyst for Si-H addition to olefins. silicone vinyl a<br>employed in elevated temperature curing silicones                                | iloxanes                                                   | ζ                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------|
| [73018-55-0] TSCA 2-2-0-X                                                                                                                                                                                                                              | 5.0g/\$49.00                                               | 25g/\$196.00          |
| SIP6830.0<br>PLATINUM - DIVINYLTETRAMETHYLDISILOXA<br>3-3.5% platinum concentration in vinyl terminated p<br>catalyst for Si-H addition to olefins. silicone vinyl a<br>employed in room temperature curing silicones<br>[68478-92-2] TSCA 2-2-0-X     | olydimethylsiloxane, neu                                   | utral<br>25g/\$156.00 |
| SIP6831.0<br>PLATINUM - DIVINYLTETRAMETHYLDISILOXA<br>2.1-2.4% platinum concentration<br>"hot" catalyst employed in room temperature curin<br>[68478-92-2] TSCA 2-3-0-X                                                                                | flashpoint: 38°C (100                                      |                       |
| SIP6831.1<br>PLATINUM - DIVINYLTETRAMETHYLDISILOXA<br>2.1-2.4% platinum concentration<br>[68478-92-2] TSCA 2-3-0-X                                                                                                                                     | NE COMPLEX in xyle<br>flashpoint: 38°C (100<br>10.0g/\$100 | °F)                   |
| SIP6832.0<br>PLATINUM - CYCLOVINYLMETHYLSILOXANE (<br>3-3.5% platinum concentration in cyclic methylvinyls<br>catalyst for Si-H addition to olefins. silicone vinyl a<br>employed in moderate elevated temperature curing<br>[68585-32-0] TSCA 2-2-0-X | siloxanes, neutral<br>ddition cure catalyst                | 25g/\$156.00          |
| SIP6833.0<br>PLATINUM-OCTANALDEHYDE/OCTANOL COM<br>2.0-2.5% platinum concentration in octanol<br>catalyst for Si-H addition to olefins. silicone vinyl a<br>increases flammability resistance of silicones<br>[68412-56-6] TSCA 2-3-0-X                |                                                            | 25g/\$140.00          |
|                                                                                                                                                                                                                                                        | J. B. 40 J. 60                                             |                       |
| Poisons for platinum catalysts used in vinyl-addition cros                                                                                                                                                                                             | sslinking must be avoided                                  | d. Examples are:      |

Poisons for platinum catalysts used in vinyl-addition crosslinking must be avoided. Examples are: Sulfur compounds (mercaptans, sulfates, sulfides, sulfites, thiols

and rubbers vulcanized with sulfur will inhibit contacting surfaces)

Nitrogen compounds (amides, amines, imides, nitriles)

Tin compounds (condensation-cure silicones, stabilized PVC)

#### **Modifiers for Vinyl Addition Silicones**

The following are the most common materials employed to modify aspects of platinum-cured vinyl-addition silicones. Other materials are found in the Gelest Metal-Organics, Silane and Silicones catalog.

| Inhibitors and Moderators of Hydrosilylation |
|----------------------------------------------|
|----------------------------------------------|

| P             | roduct Code                                                                                                                                                                      | M.W.                                             | b.p.                                                     | density                                 | R.I.                 |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|-----------------------------------------|----------------------|
| 1,            | ID4613.0<br>,3-DIVINYLTETRAMETHYLDISILOXANE<br>C <sub>8</sub> H <sub>18</sub> OSi <sub>2</sub>                                                                                   |                                                  | 139°<br>(-99°)mp<br>ГҮ- orl rat, I<br>:: 24°C(76°F)      |                                         | 1.4123<br>500mg/kg   |
| [2            | 2627-95-4] TSCA HMIS: 2-4-0-X                                                                                                                                                    | 50g/\$20.0                                       |                                                          | 500g/\$14                               | 0.00                 |
| 1,<br>N<br>C  | IT7900.0<br>,3,5,7-TETRAVINYL-1,3,5,7-TETRA-<br>AETHYLCYCLOTETRASILOXANE<br>C <sub>12</sub> H <sub>24</sub> O4Si4<br>27342-69-4] TSCA HMIS: 2-1-0-X                              | 344.66<br>flashpoint<br>viscosity:<br>25g/\$19.0 |                                                          | 0.998<br>4°F)<br>100g/\$62              | 1.4342<br>.00        |
| Adhesion Pro  | omoters                                                                                                                                                                          |                                                  |                                                          |                                         |                      |
| A<br>C        | IA0540.0<br>LLYLTRIMETHOXYSILANE<br>C6H <sub>14</sub> O <sub>3</sub> Si<br>2551-83-9] TSCA HMIS: 3-2-1-X                                                                         | 162.26<br>flashpoint<br>10g/\$24.0               | 146-8°<br>:: 46°C(115°)<br>00                            | 0.963 <sup>25</sup><br>F)<br>50g/\$96.0 | 1.4036 <sup>25</sup> |
| Special Cross | slinkers                                                                                                                                                                         |                                                  |                                                          |                                         |                      |
| 1,<br>SI<br>C | ID4582.0<br>,3-DIPHENYL-1,1,3,3-TETRAKIS(DIMETHYL-<br>ILOXY)DISILOXANE 95%<br>C20H38O5Si6<br>crosslinker for medium refractive index vinyl add<br>66817-59-2] TSCA HMIS: 2-1-1-X | dition silic                                     | 95-6°/0.25<br>:: >110°C(>2<br>one elastome:<br>g/\$24.00 |                                         | 1.4367<br>00         |
| Diluent Flui  | ds for Gel Hardness and Tactile Response                                                                                                                                         |                                                  |                                                          |                                         |                      |
|               | DMS-T31<br>olyDIMETHYLSILOXANE, 1000 cSt.                                                                                                                                        | 100g/\$10                                        | .00                                                      | 3kg/\$96.0                              | 00                   |

ALT-143 1kg/\$168.00 polyOCTYLMETHYLSILOXANE, 600-1000 cSt. 100g/\$24.00

# **Crosslinking Agents for Condensation Cure Silicones**

Acetoxy Crosslinkers

| Acetoxy Crosslinkers                                                                                                                                                                             |                                      |                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------|
| Code<br>SID2790.0                                                                                                                                                                                | M.W.                                 | density                                     |
| DI-t-BUTOXYDIACETOXYSILANE<br>SILICON DI-t-BUTOXIDE DIACETATE<br>C <sub>12</sub> H <sub>24</sub> O <sub>6</sub> Si flashpoint: 95°C (203°F)<br>adhesion promoter for silicone RTV's              | 292.40<br>(-4°)mj                    |                                             |
| [13170-23-5] TSCA HMIS: 3-2-2-X 50g/\$19.0                                                                                                                                                       | 00                                   | 250g/\$76.00                                |
| SIE4899.0<br>ETHYLTRIACETOXYSILANE<br>C <sub>8</sub> H14O <sub>6</sub> Si<br>flashpoint: 106°C(223°F)<br>liquid crosslinker for silicone RTV's                                                   | 243.28<br>(7-9°)n                    |                                             |
| [17689-77-9] TSCA HMIS: 3-1-1-X 25g/\$12.0                                                                                                                                                       | 00                                   | 250g/\$78.00                                |
| SIM6519.0<br>METHYLTRIACETOXYSILANE, 95%<br>C <sub>7</sub> H <sub>12</sub> O <sub>6</sub> Si<br>vapor pressure, 94°: 9mm flashpoint: 85°C(18<br>most common cross-linker for condensation cure s |                                      | р                                           |
| [4253-34-3] TSCA HMIS: 3-2-1-X 50g/\$21.0                                                                                                                                                        |                                      | 500g/\$148.00                               |
| SIM6519.2<br>METHYLTRIACETOXYSILANE-<br>ETHYLTRIACETOXYSILANE 80:20 BLEND<br>liquid crosslinker blend for silicone RTV's<br>[4253-34-3] 100g/\$24.00 1kg/\$168.00                                |                                      |                                             |
| SIV9098.0<br>VINYLTRIACETOXYSILANE<br>C <sub>8</sub> H <sub>12</sub> O <sub>6</sub> Si flashpoint: 88°C (190°F)<br>[4130-08-9] TSCA HMIS: 3-2-1-X 100g/16.0                                      | 232.26<br>0                          | 1.167<br>500g/\$64.00                       |
| Alkoxy Crosslinkers                                                                                                                                                                              |                                      |                                             |
| SIB1817.0<br>BIS(TRIETHOXYSILYL)ETHANE<br><i>HEXAETHOXYDISILETHYLENE</i><br>C <sub>14</sub> H <sub>34</sub> O <sub>6</sub> Si <sub>2</sub>                                                       | 354.59                               | 0.957                                       |
| additive to formulations that enhances adhesion<br>[16068-37-4] TSCA HMIS: 3-1-1-X 25g/\$22.0                                                                                                    | 00                                   | 100g/\$72.00                                |
| SIM6555.0<br>METHYLTRIETHOXYSILANE                                                                                                                                                               |                                      |                                             |
| C <sub>7</sub> H <sub>18</sub> O <sub>3</sub> Si TOXICITY- oral rat, LD5<br>[2031-67-6] TSCA HMIS: 1-3-1-X 25g/\$10.0                                                                            | 178.30<br>50: 12,50<br>00            |                                             |
| C <sub>7</sub> H <sub>18</sub> O <sub>3</sub> Si TOXICITY- oral rat, LD5                                                                                                                         | 50: 12,50<br>00<br>136.22<br>(-78°)n | 0mg/kg<br>2.0kg/\$100.00<br><br>0.955<br>1p |

| Code                                                                                                                                                                                                                                                                        |                                                | M.W.                          | density                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------|--------------------------------|
| SIT7110.0<br>TETRAETHOXYSILANE<br><i>TETRAETHYLORTHOSILICATE TEO</i><br>C <sub>8</sub> H <sub>20</sub> O <sub>4</sub> Si TOXICITY - oral ra<br>flashpoint 46°C (116°F)                                                                                                      |                                                | 208.33<br>(-77°)mp<br>70mg/kg | 0.9335                         |
| vapor pressure, 20°: 11.8mm                                                                                                                                                                                                                                                 | viscosity: 0.8<br>100g/\$10.00                 |                               | kg/\$56.00                     |
| SIT7777.0<br>TETRA-n-PROPOXYSILANE<br>C <sub>12</sub> H <sub>28</sub> O <sub>4</sub> Si<br>flashpoint: 95°C (203°F) viscosit                                                                                                                                                | y: 1.66 cSt                                    | 264.44<br>(<-80°)mp           |                                |
| [682-01-9] TSCA HMIS: 2-2-1-X                                                                                                                                                                                                                                               | 100g/\$14.00                                   | ) 1.5                         | kg/\$130.00                    |
| SIV9220.0<br>VINYLTRIMETHOXYSILANE<br>C <sub>5</sub> H <sub>12</sub> O <sub>3</sub> Si TOXICITY- ora<br>VAPORS DAN<br>viscosity: 0.6 cSt flashpoint: 23°C<br>[2768-02-7] TSCA HMIS: 3-4-1-X                                                                                 | GEROUS T<br>C (73°F)                           | O EYES                        | 0.970<br>/kg<br>5kg/\$96.00    |
| Oxime Crosslinkers                                                                                                                                                                                                                                                          |                                                |                               |                                |
| SIM6590.0<br>METHYLTRIS(METHYLETHYLKETC<br>SILANE <i>METHYLTRIS(2-BUTANON</i><br>C <sub>13</sub> H <sub>27</sub> N <sub>3</sub> O <sub>3</sub> Si TOXICITY- oral<br>flashpoint: 90°C (194°F)<br>neutral crosslinker for condensation cur<br>[22984-54-9] TSCA HMIS: 2-2-1-X | <i>EOXINO)SI</i><br>rat, LD50:<br>re silicones | <i>LANE</i><br>2000-3000      | 0.982<br>1mg/kg<br>xg/\$160.00 |
| SIV9280.0<br>VINYLTRIS(METHYLETHYLKETOXISILANE<br>$C_{14}H_{27}N_3O_3Si$                                                                                                                                                                                                    | MINO)- 3                                       | 13.47                         | 0.982                          |
| [2224-33-1] TŠCA HMIS: 3-3-1-X                                                                                                                                                                                                                                              | 50g/\$15.00                                    | 1.5                           | ikg/\$180.00                   |
| Enoxy (Acetone) Crosslinkers                                                                                                                                                                                                                                                |                                                |                               |                                |
| SIV9209.0<br>VINYLTRIISOPROPENOXYSILANE<br>$C_{11}H_{18}O_3Si$                                                                                                                                                                                                              |                                                | 226.35                        |                                |
|                                                                                                                                                                                                                                                                             | 10g/\$40.00                                    | 50                            | )g/\$160.00                    |
| Amino and Benzamido Crosslinkers                                                                                                                                                                                                                                            |                                                |                               |                                |
| SIB1610.0<br>BIS(N-METHYLBENZAMIDO)ETHC<br>SILANE, 90%<br>C <sub>19</sub> H <sub>24</sub> N <sub>2</sub> O <sub>3</sub> Si                                                                                                                                                  | )XYMETH                                        | YL-                           | 356.50                         |
| [16230-35-6] TSCA HMIS: 2-1-1-X                                                                                                                                                                                                                                             | 25g/\$23.00                                    | 100g                          | /\$75.00                       |
| SIT8710.0<br>TRIS(CYCLOHEXYLAMINO)METHY<br>C <sub>19</sub> H <sub>39</sub> N <sub>3</sub> Si flashpoint: 110°C(2                                                                                                                                                            |                                                |                               | 337.62                         |
| [15901-40-3] TSCA HMIS: 3-2-1-X                                                                                                                                                                                                                                             |                                                | 10                            | 0g/\$176.00                    |

# Tin Catalysts for Silicone Condensation Cure RTV's

| name                                                                                                                                                                                                                                                                                                                                                                                                        | M.W.                                     | d <sup>20</sup>              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------|
| C <sub>16</sub> H <sub>30</sub> O <sub>4</sub> Sn TOXICITY - orl r<br>catalyst for two-component condensati<br>highest activity, short pot life,<br>does not cause silicone reversion<br>use level: 0.1-0.3%                                                                                                                                                                                                | ethylhexanoic acid<br>at, LD50: 5,810 m  | 1.28<br>g/kg<br>1 kg/\$54.00 |
| SNB1101<br>BIS(2-ETHYLHEXANOATE)TIN, 50%<br>in polydimethylsiloxane <i>TIN II OCTO</i><br>C <sub>16</sub> H <sub>30</sub> O <sub>4</sub> Sn<br>predilution results in better compatibili<br>[301-10-0] TSCA HMIS: 2-1-1-X                                                                                                                                                                                   | ATE                                      | 1.12<br>1kg/\$84.00          |
| C <sub>20</sub> H <sub>38</sub> O <sub>4</sub> Sn dark viscous<br>catalyst for two-component condensati<br>slower than SNB1100<br>does not cause reversion<br>use level: 0.2-0.4%                                                                                                                                                                                                                           | on RTV's                                 |                              |
| SND2930<br>DI-n-BUTYLBIS(2-ETHYLHEXYL-<br>MALEATE)TIN<br><i>DIBUTYLTIN DIISOOCTYLMALEATH</i><br>C <sub>32</sub> H <sub>56</sub> O <sub>8</sub> Sn<br>catalyst for one-component RTV's<br>good adhesion to metal substrates<br>[25168-21-2] TSCA HMIS: 2-2-0-X                                                                                                                                               |                                          | 1.145<br>250g/\$40.00        |
| <ul> <li>SND2950</li> <li>DI-n-BUTYLBIS(2,4-PENTANEDION C<sub>18</sub>H<sub>32</sub>O<sub>4</sub>Sn flashpoint: 91°C (190 stable tin<sup>+4</sup> catalyst with reduced rever can be used in conjunction with SND2 catalyst in silicone RTV cures<sup>1,2</sup>.</li> <li>1. T. Lockhardt et al, US Pat. 4,517,33</li> <li>2. J. Wengrovius, US Pat. 4,788, 170, [22673-19-4] TSCA HMIS: 2-2-1-X</li> </ul> | 6°F)<br>sion<br>3260<br>57, 1985<br>1988 | 3 1.2<br>00g/\$78.00         |
| SND3110<br>DI-n-BUTYLBUTOXYCHLOROTIN,<br>C <sub>12</sub> H <sub>27</sub> ClOSn<br>catalyst for two-component condensati<br>1. R. Chadho et al, US Pat. 3,574,785<br>[14254-22-9] TSCA HMIS: 3-2-1-X                                                                                                                                                                                                         | on cure silicone RI<br>5, 1971           | [V's'.<br>00g/\$78.00        |

| name                                                                                                                                                                                                                                            | M.W.                                             | d <sup>20</sup>         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------|
| SND3160<br>DI-n-BUTYLDIACETOXYTIN, 95%<br><i>DIBUTYLTINDIACETATE</i> (-10°)m                                                                                                                                                                    | 1                                                | 1.320                   |
| C <sub>12</sub> H <sub>24</sub> O <sub>4</sub> Sn TOXICITY - oral must<br>flashpoint: 143°C (290<br>high activity catalyst for one-component co<br>suitable for acetoxy cure and neutral alkoxy<br>use level 0.1-0.3%                           | )°F)<br>ondensation RT                           |                         |
| [1067-33-0] TSCA HMIS: 3-1-1-X 25                                                                                                                                                                                                               | g/\$10.00                                        | 500g/\$78.00            |
| SND3260<br>DI-n-BUTYLDILAURYLTIN<br><i>DIBUTYLTIN DILAURATE</i><br>TOXICITY-orl rat, LI<br>C <sub>32</sub> H <sub>64</sub> O <sub>4</sub> Sn flashpoint: 231°C (448°F                                                                           |                                                  |                         |
| viscosity, 25°: 31-4 cSt<br>widely used catalyst for two-component co<br>moderate activity, longer pot life, employed<br>FDA allowance as curing catalyst for silicor<br>use level: 0.2-0.6%                                                    | ndensation RTV<br>l in silicone emu              | ilsions                 |
|                                                                                                                                                                                                                                                 | 00g/\$11.00                                      | 1kg/\$58.00             |
| SND4220<br>DIMETHYLDINEODECANOATETIN, 9<br>DIMETHYLTIN DINEODECANOATE<br>TOXICITY- oral rat, 1<br>C <sub>22</sub> H <sub>44</sub> O <sub>4</sub> Sn flashpoint: 153°C (307°F<br>catalyst for one- and two-component cond<br>use level: 0.5-0.8% | LD50: 1470mg/<br><sup>3)</sup><br>ensation RTV's | -                       |
| [68928-76-7] TSCA HMIS: 2-1-0-X 50g/\$                                                                                                                                                                                                          | \$12.00                                          | 250g/\$44.00            |
| SND4240<br>DIMETHYLHYDROXY(OLEATE)TIN 85<br>$C_{20}H_{40}O_3$ Sn viscous liquid<br>TOXICITY - oral rat,<br>elevated temperature catalyst for condensat<br>use level: 0.8-1.2%                                                                   | LD50: 800mg/<br>ion cure silicone                | s                       |
| [43136-18-1] TSCA HMIS: 2-1-0-X 25g/                                                                                                                                                                                                            | \$12.00                                          | 100g/\$40.00            |
| SND4430<br>DIOCTYLDILAURYLTIN 95%<br><i>DIOCTYLTINDILAURATE</i><br>TOXICII                                                                                                                                                                      | 743.76<br>TV - oral rat. LT                      | 0.998<br>050: 6450mg/kg |
| C <sub>40</sub> H <sub>80</sub> O <sub>4</sub> Sn flashpoint: 70°C (158°F)<br>low toxicity tin catalyst<br>moderate activity, longer pot life<br>applications in silicone emulsions and solve<br>use level: 0.8-1.3%                            |                                                  |                         |
|                                                                                                                                                                                                                                                 | /\$14.00                                         | 100g/\$46.00            |

## Titanate Catalysts for Alkoxy and Oxime Neutral Cure RTV's

| name                                                                                                                                                                                            | MW ł                                                           | b.p./mm(m.p         | o.) d <sup>20</sup>        | n <sup>20</sup> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------|----------------------------|-----------------|
| AKT853<br>TITANIUM DI-n-BUTOXIDE (BIS-2,4-<br>PENTANEDIONATE) 73% in n-butanol<br>C <sub>18</sub> H <sub>32</sub> O <sub>6</sub> Ti                                                             | 392.32<br>flashpoint: 33°                                      | C(91°F)             | 0.995                      |                 |
| [16902-59-3] TSCA HMIS: 2-3-1-X                                                                                                                                                                 | 100g/\$30.00                                                   |                     | 500g/\$120.00              |                 |
| AKT853.2<br>TITANIUM DI-n-BUTOXIDE (BIS-2,4-<br>PENTANEDIONATE) 70% in polydimethylsiloxane<br>C <sub>18</sub> H <sub>32</sub> O <sub>6</sub> Ti compatible with acetoxy and oxime cu           | 392.32                                                         |                     | 1.00                       |                 |
| C <sub>18</sub> H <sub>32</sub> O <sub>6</sub> Ti compatible with acetoxy and oxime cu<br>[16902-59-3] TSCA HMIS: 2-2-1-X                                                                       | 100g/\$34.00                                                   |                     | 500g/\$130                 | 5.00            |
| AKT855<br>TITANIUM DIISOPROPOXIDE(BIS-2,4-PEN-<br>TANEDIONATE) 75% in isopropanol<br>C <sub>16</sub> H <sub>28</sub> O <sub>6</sub> Ti <i>TIACA</i><br>miscible: aqueous acetone, most organics | 364.26<br>TOXICITY- o<br>flashpoint: 12°<br>viscosity, 25°: 8  | C (54°F)            | 0                          | U               |
| [17927-72-9] TSCA HMIS: 2-3-1-X                                                                                                                                                                 | 100g/\$10.00                                                   |                     | 500g/\$29.                 | 00              |
| AKT865<br>TITANIUM DIISOPROPOXIDE BIS(ETHYL-<br>ACETOACETATE) 95%<br>C <sub>18</sub> H <sub>32</sub> O <sub>8</sub> Ti 11.0 - 11.2% Ti                                                          | 452.02<br>TOXICITY - c<br>viscosity, 25°: 4<br>flashpoint: 27° | 45-55 cSt           | 1.05<br>0: 23,020 r        | ng/kg           |
| [27858-32-8] TSCA HMIS: 2-3-1-X                                                                                                                                                                 | 100g/\$12.00                                                   | C (80 1)            | 500g/\$48.00               |                 |
| AKT867<br>TITANIUM 2-ETHYLHEXOXIDE<br><i>TETRAOCTYLTITANATE</i> 8.4-8.6% Ti<br>C <sub>32</sub> H <sub>68</sub> O <sub>4</sub> Ti<br>catalyst for silicone condensation RTV's                    | 564.79 194<br>viscosity, 25°: 1<br>flashpoint: 60%             |                     | 0.937                      | 1.482           |
| [3061-42-5] TSCA HMIS: 2-2-1-X                                                                                                                                                                  | 100g/\$10.00                                                   |                     | 2kg/\$60.00                |                 |
| AKT889<br>TITANIUM TRIMETHYLSILOXIDE<br><i>TETRAKIS(TRIMETHYLSILOXY)TITANIUM</i>                                                                                                                | 404.66 11<br>flashpoint: 51%                                   | .0°/10<br>C (124°F) | 0.900                      | 1.4278          |
| C <sub>12</sub> H <sub>36</sub> O <sub>4</sub> Si <sub>4</sub> Ti<br>[15990-66-6] HMIS: 2-2-1-X                                                                                                 | 25g/\$32.00                                                    |                     | 100g/\$104                 | 4.00            |
| Peroxide Catalysts for Hea                                                                                                                                                                      | at-Cured Silicon                                               | e Rubber            |                            |                 |
| SID3352.0                                                                                                                                                                                       |                                                                |                     |                            |                 |
| 2,4-DICHLOROBENZOYL PEROXIDE,<br>50% in polydimethylsiloxane paste consistency                                                                                                                  | MW: 380.00                                                     |                     | density: 1.                | 26              |
| silicone compounding temp. <50°; cure temp. >90<br>[133-14-2] TSCA HMIS: 3-4-1                                                                                                                  |                                                                | ed cure temp:       | : 105-120°<br>500g/\$130   | 5.00            |
| SID3379.0<br>DICUMYL PEROXIDE, 25%<br>in polydimethylsiloxane, 40% w/ calcium carbonate, 35<br>silicone compounding temp. <60°; cure temp. >12                                                  |                                                                | led cure temj       | p: 155-175'                | þ               |
| $C_{18}H_{11}O_2$                                                                                                                                                                               | 100 100 5-                                                     |                     | <b>F</b> oo ( <b>b</b> ) ( |                 |

 $\begin{bmatrix} C_{18}H_{11}O_2 \\ [80-43-3] \text{ TSCA HMIS: } 2-3-2-X \\ 100g/\$37.00 \\ 500g/\$148.00 \\ \end{bmatrix}$ 

#### **Pigments and Coloration**

Pigment concentrates in silicone oil are readily dispersed in all silicone cure systems. Pigments are generally mixed at 1-4 parts per hundred with the A part of two part vinyl addition silicones. Silicone coatings generally employ 2-6 parts per hundred.

| Code    | Color                 | Concentration | Price/100g | Price/1kg |
|---------|-----------------------|---------------|------------|-----------|
| PGWHT01 | White                 | 45%           | \$30.00    | \$180.00  |
| PGRED01 | Red                   | 50%           | \$30.00    | \$180.00  |
| PGORR01 | Orange-Red            | 45%           | \$30.00    | \$180.00  |
| PGYLW01 | Yellow                | 55%           | \$30.00    | \$180.00  |
| PGGRN01 | Green                 | 55%           | \$30.00    | \$180.00  |
| PGBLU01 | Blue                  | 45%           | \$30.00    | \$180.00  |
| PGFLS01 | Flesh                 | 60%           | \$30.00    | \$180.00  |
| PGBRN01 | Brown                 | 55%           | \$30.00    | \$180.00  |
| PGBLK01 | Black - nonconductive | 55%           | \$30.00    | \$180.00  |
| PGBLK02 | Black - conductive    | 45%           | \$30.00    | \$180.00  |

#### Pigment Concentrates (dispersed in silicone)

Dyes in silicone oils provide coloration without compromising transparency. The fluids may be used directly in applications such as gauges or as tints for silicone elastomers.

| DMS-T21BLU | (Blue dye in 100cSt. silicone) | 1kg/\$64.00 |
|------------|--------------------------------|-------------|
| DMS-T21RED | (Red dye in 100cSt. silicone)  | 1kg/\$64.00 |

#### **Fillers and Reinforcements**

Hexamethyldisilazane treated silica is the preferred filler for silicones. The material is very fine and hydrophobic. Enclosed high-shear compounding equipment is required for adequate dispersion.

| Product Code                                                                                                            | M.W.                                                                  | density                             |  |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------|--|
| SIC2050.0<br>CALCIUM METASILICATE<br><i>Wollastonite</i><br>CaO <sub>3</sub> Si                                         | 116.16<br>hardness: 4.5-5                                             | 2.9                                 |  |
| weakly reinforcing filler for silicone rubbers- st<br>[13983-17-0] TSCA HMIS: 1-0-0-X                                   | iitable for putty<br>500g/\$15.00                                     | 2.5kg/\$30.00                       |  |
| SIS6962.0<br>Silicon Dioxide, Amorphous<br>Hexamethyldisilazane treated                                                 | 60.09                                                                 | 2.2                                 |  |
| <i>FUMED SILICA, HMDZ TREATED</i><br>SiO <sub>2</sub><br>reinforcing filler for high tear strength silicone             | surface area, 200m²/g<br>ultimate article size: 0.02m<br>cone rubbers |                                     |  |
| [68909-20-6] TSCA HMIS: 2-0-0-X                                                                                         | 500g/\$24.00                                                          | 2kg/\$78.00                         |  |
| SIS6964.0<br>SILICON DIOXIDE, CRYSTALLINE<br><i>QUARTZ POWDER</i><br>SiO <sub>2</sub><br>[7631-86-9] TSCA HMIS: 1-0-0-X | 60.09<br>TOXICITY- oral- r<br>hardness: 7.0<br>500g/\$1               | 2.65<br>at, LD50: 3160mg/kg<br>0.00 |  |